1st iteration for theory
This commit is contained in:
parent
9dc085055e
commit
be07f74849
261
sfBSE.bib
261
sfBSE.bib
@ -1,13 +1,208 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2020-10-25 21:09:09 +0100
|
%% Created for Pierre-Francois Loos at 2020-10-28 14:37:29 +0100
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@article{Puschnig_2002,
|
||||||
|
Author = {Puschnig, Peter and Ambrosch-Draxl, Claudia},
|
||||||
|
Date-Added = {2020-10-28 14:36:34 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:36:34 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.89.056405},
|
||||||
|
Issue = {5},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Jul},
|
||||||
|
Numpages = {4},
|
||||||
|
Pages = {056405},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Suppression of Electron-Hole Correlations in 3D Polymer Materials},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.89.056405},
|
||||||
|
Volume = {89},
|
||||||
|
Year = {2002},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.89.056405},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.89.056405}}
|
||||||
|
|
||||||
|
@article{Horst_1999,
|
||||||
|
Author = {van der Horst, J.-W. and Bobbert, P. A. and Michels, M. A. J. and Brocks, G. and Kelly, P. J.},
|
||||||
|
Date-Added = {2020-10-28 14:34:58 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:58 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.83.4413},
|
||||||
|
Issue = {21},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Nov},
|
||||||
|
Numpages = {0},
|
||||||
|
Pages = {4413--4416},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Ab Initio Calculation of the Electronic and Optical Excitations in Polythiophene: Effects of Intra- and Interchain Screening},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.83.4413},
|
||||||
|
Volume = {83},
|
||||||
|
Year = {1999},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.83.4413},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.83.4413}}
|
||||||
|
|
||||||
|
@article{Rohlfing_1995,
|
||||||
|
Author = {Rohlfing, Michael and Kr{\"u}ger, Peter and Pollmann, Johannes},
|
||||||
|
Date-Added = {2020-10-28 14:34:35 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:35 +0100},
|
||||||
|
Doi = {10.1103/PhysRevB.52.1905},
|
||||||
|
Issue = {3},
|
||||||
|
Journal = {Phys. Rev. B},
|
||||||
|
Month = {Jul},
|
||||||
|
Numpages = {0},
|
||||||
|
Pages = {1905--1917},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Efficient Scheme for GW Quasiparticle Band-Structure Calculations with Aapplications to Bulk Si and to the Si(001)-(2\ifmmode\times\else\texttimes\fi{}1) Surface},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevB.52.1905},
|
||||||
|
Volume = {52},
|
||||||
|
Year = {1995},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.52.1905},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.52.1905}}
|
||||||
|
|
||||||
|
@article{Rohlfing_1998,
|
||||||
|
Author = {Rohlfing, Michael and Louie, Steven G.},
|
||||||
|
Date-Added = {2020-10-28 14:34:35 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:35 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.81.2312},
|
||||||
|
Issue = {11},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Sep},
|
||||||
|
Numpages = {0},
|
||||||
|
Pages = {2312--2315},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Electron-Hole Excitations in Semiconductors and Insulators},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.81.2312},
|
||||||
|
Volume = {81},
|
||||||
|
Year = {1998},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.81.2312},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.81.2312}}
|
||||||
|
|
||||||
|
@article{Rohlfing_1999a,
|
||||||
|
Author = {Rohlfing, Michael and Louie, Steven G.},
|
||||||
|
Date-Added = {2020-10-28 14:34:35 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:35 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.82.1959},
|
||||||
|
Issue = {9},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Mar},
|
||||||
|
Numpages = {0},
|
||||||
|
Pages = {1959--1962},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Optical Excitations in Conjugated Polymers},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.82.1959},
|
||||||
|
Volume = {82},
|
||||||
|
Year = {1999},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.82.1959},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.82.1959}}
|
||||||
|
|
||||||
|
@article{Rohlfing_1999b,
|
||||||
|
Author = {Rohlfing, Michael and Louie, Steven G.},
|
||||||
|
Date-Added = {2020-10-28 14:34:35 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:35 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.83.856},
|
||||||
|
Issue = {4},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Jul},
|
||||||
|
Numpages = {0},
|
||||||
|
Pages = {856--859},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Excitons and Optical Spectrum of the $\mathrm{Si}(111)\ensuremath{-}(2\ifmmode\times\else\texttimes\fi{}1)$ Surface},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.83.856},
|
||||||
|
Volume = {83},
|
||||||
|
Year = {1999},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.83.856},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.83.856}}
|
||||||
|
|
||||||
|
@article{Rohlfing_2012,
|
||||||
|
Author = {Rohlfing, Michael},
|
||||||
|
Date-Added = {2020-10-28 14:34:35 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:34:35 +0100},
|
||||||
|
Doi = {10.1103/PhysRevLett.108.087402},
|
||||||
|
Issue = {8},
|
||||||
|
Journal = {Phys. Rev. Lett.},
|
||||||
|
Month = {Feb},
|
||||||
|
Numpages = {5},
|
||||||
|
Pages = {087402},
|
||||||
|
Publisher = {American Physical Society},
|
||||||
|
Title = {Redshift of Excitons in Carbon Nanotubes Caused by the Environment Polarizability},
|
||||||
|
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.108.087402},
|
||||||
|
Volume = {108},
|
||||||
|
Year = {2012},
|
||||||
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.108.087402},
|
||||||
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.108.087402}}
|
||||||
|
|
||||||
|
@article{Li_2016,
|
||||||
|
Author = {Li, Zhendong and Liu, Wenjian},
|
||||||
|
Date-Added = {2020-10-28 14:21:46 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:21:52 +0100},
|
||||||
|
Doi = {10.1021/acs.jctc.5b01158},
|
||||||
|
Eprint = {https://doi.org/10.1021/acs.jctc.5b01158},
|
||||||
|
Journal = {Journal of Chemical Theory and Computation},
|
||||||
|
Note = {PMID: 26672389},
|
||||||
|
Number = {1},
|
||||||
|
Pages = {238-260},
|
||||||
|
Title = {Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet--Doublet Transitions},
|
||||||
|
Url = {https://doi.org/10.1021/acs.jctc.5b01158},
|
||||||
|
Volume = {12},
|
||||||
|
Year = {2016},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.5b01158}}
|
||||||
|
|
||||||
|
@article{Li_2010,
|
||||||
|
Author = {Li,Zhendong and Liu,Wenjian},
|
||||||
|
Date-Added = {2020-10-28 14:19:49 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:19:52 +0100},
|
||||||
|
Doi = {10.1063/1.3463799},
|
||||||
|
Eprint = {https://doi.org/10.1063/1.3463799},
|
||||||
|
Journal = {The Journal of Chemical Physics},
|
||||||
|
Number = {6},
|
||||||
|
Pages = {064106},
|
||||||
|
Title = {Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory},
|
||||||
|
Url = {https://doi.org/10.1063/1.3463799},
|
||||||
|
Volume = {133},
|
||||||
|
Year = {2010},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.3463799}}
|
||||||
|
|
||||||
|
@article{Li_2011b,
|
||||||
|
Author = {Li,Zhendong and Liu,Wenjian},
|
||||||
|
Date-Added = {2020-10-28 14:18:56 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:19:00 +0100},
|
||||||
|
Doi = {10.1063/1.3660688},
|
||||||
|
Eprint = {https://doi.org/10.1063/1.3660688},
|
||||||
|
Journal = {The Journal of Chemical Physics},
|
||||||
|
Number = {19},
|
||||||
|
Pages = {194106},
|
||||||
|
Title = {Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation},
|
||||||
|
Url = {https://doi.org/10.1063/1.3660688},
|
||||||
|
Volume = {135},
|
||||||
|
Year = {2011},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.3660688}}
|
||||||
|
|
||||||
|
@article{Li_2011a,
|
||||||
|
Author = {Li,Zhendong and Liu,Wenjian and Zhang,Yong and Suo,Bingbing},
|
||||||
|
Date-Added = {2020-10-28 14:18:03 +0100},
|
||||||
|
Date-Modified = {2020-10-28 14:18:28 +0100},
|
||||||
|
Doi = {10.1063/1.3573374},
|
||||||
|
Eprint = {https://doi.org/10.1063/1.3573374},
|
||||||
|
Journal = {The Journal of Chemical Physics},
|
||||||
|
Number = {13},
|
||||||
|
Pages = {134101},
|
||||||
|
Title = {Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application},
|
||||||
|
Url = {https://doi.org/10.1063/1.3573374},
|
||||||
|
Volume = {134},
|
||||||
|
Year = {2011},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.3573374}}
|
||||||
|
|
||||||
|
@article{Authier_2020,
|
||||||
|
Author = {J. Authier and P. F. Loos},
|
||||||
|
Date-Added = {2020-10-28 11:21:07 +0100},
|
||||||
|
Date-Modified = {2020-10-28 11:21:41 +0100},
|
||||||
|
Journal = {J. Chem. Phys.},
|
||||||
|
Title = {Dynamical Kernels for Optical Excitations},
|
||||||
|
Year = {in press}}
|
||||||
|
|
||||||
@article{Casanova_2020,
|
@article{Casanova_2020,
|
||||||
Author = {D. Casanova and A. I. Krylov},
|
Author = {D. Casanova and A. I. Krylov},
|
||||||
Date-Added = {2020-10-25 13:00:27 +0100},
|
Date-Added = {2020-10-25 13:00:27 +0100},
|
||||||
@ -2293,24 +2488,6 @@
|
|||||||
Year = {2007},
|
Year = {2007},
|
||||||
Bdsk-Url-1 = {https://doi.org/10.1002/9780470125922.ch2}}
|
Bdsk-Url-1 = {https://doi.org/10.1002/9780470125922.ch2}}
|
||||||
|
|
||||||
@article{Rohlfing_1995,
|
|
||||||
Author = {Rohlfing, Michael and Kr{\"u}ger, Peter and Pollmann, Johannes},
|
|
||||||
Date-Added = {2020-05-18 21:40:28 +0200},
|
|
||||||
Date-Modified = {2020-05-18 21:40:28 +0200},
|
|
||||||
Doi = {10.1103/PhysRevB.52.1905},
|
|
||||||
Issue = {3},
|
|
||||||
Journal = {Phys. Rev. B},
|
|
||||||
Month = {Jul},
|
|
||||||
Numpages = {0},
|
|
||||||
Pages = {1905--1917},
|
|
||||||
Publisher = {American Physical Society},
|
|
||||||
Title = {Efficient Scheme for GW Quasiparticle Band-Structure Calculations with Aapplications to Bulk Si and to the Si(001)-(2\ifmmode\times\else\texttimes\fi{}1) Surface},
|
|
||||||
Url = {https://link.aps.org/doi/10.1103/PhysRevB.52.1905},
|
|
||||||
Volume = {52},
|
|
||||||
Year = {1995},
|
|
||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.52.1905},
|
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.52.1905}}
|
|
||||||
|
|
||||||
@article{Rohlfing_1999,
|
@article{Rohlfing_1999,
|
||||||
Author = {Rohlfing, Michael and Louie, Steven G.},
|
Author = {Rohlfing, Michael and Louie, Steven G.},
|
||||||
Date-Added = {2020-05-18 21:40:28 +0200},
|
Date-Added = {2020-05-18 21:40:28 +0200},
|
||||||
@ -7294,20 +7471,6 @@
|
|||||||
Year = {2006},
|
Year = {2006},
|
||||||
Bdsk-Url-1 = {https://doi.org/10.1080/00268970500416145}}
|
Bdsk-Url-1 = {https://doi.org/10.1080/00268970500416145}}
|
||||||
|
|
||||||
@article{Li_2011,
|
|
||||||
Author = {Xiangzhu Li and Josef Paldus},
|
|
||||||
Date-Added = {2020-01-01 21:36:51 +0100},
|
|
||||||
Date-Modified = {2020-01-01 21:36:52 +0100},
|
|
||||||
Doi = {10.1063/1.3595513},
|
|
||||||
Journal = {J. Chem. Phys.},
|
|
||||||
Number = {21},
|
|
||||||
Pages = {214118},
|
|
||||||
Title = {Multi-Reference State-Universal Coupled-Cluster Approaches to Electronically Excited States},
|
|
||||||
Url = {https://doi.org/10.1063/1.3595513},
|
|
||||||
Volume = {134},
|
|
||||||
Year = {2011},
|
|
||||||
Bdsk-Url-1 = {https://doi.org/10.1063/1.3595513}}
|
|
||||||
|
|
||||||
@article{Li_2013,
|
@article{Li_2013,
|
||||||
Author = {Li, Yan-Ni and Wang, Shengguang and Wang, Tao and Gao, Rui and Geng, Chun-Yu and Li, Yong-Wang and Wang, Jianguo and Jiao, Haijun},
|
Author = {Li, Yan-Ni and Wang, Shengguang and Wang, Tao and Gao, Rui and Geng, Chun-Yu and Li, Yong-Wang and Wang, Jianguo and Jiao, Haijun},
|
||||||
Date-Added = {2020-01-01 21:36:51 +0100},
|
Date-Added = {2020-01-01 21:36:51 +0100},
|
||||||
@ -14408,22 +14571,6 @@
|
|||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.80.4510},
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.80.4510},
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.80.4510}}
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.80.4510}}
|
||||||
|
|
||||||
@article{Rohlfing_1998,
|
|
||||||
Author = {Rohlfing, Michael and Louie, Steven G.},
|
|
||||||
Doi = {10.1103/PhysRevLett.81.2312},
|
|
||||||
Issue = {11},
|
|
||||||
Journal = {Phys. Rev. Lett.},
|
|
||||||
Month = {Sep},
|
|
||||||
Numpages = {0},
|
|
||||||
Pages = {2312--2315},
|
|
||||||
Publisher = {American Physical Society},
|
|
||||||
Title = {Electron-Hole Excitations in Semiconductors and Insulators},
|
|
||||||
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.81.2312},
|
|
||||||
Volume = {81},
|
|
||||||
Year = {1998},
|
|
||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.81.2312},
|
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.81.2312}}
|
|
||||||
|
|
||||||
@article{vanderHorst_1999,
|
@article{vanderHorst_1999,
|
||||||
Author = {van der Horst, J.-W. and Bobbert, P. A. and Michels, M. A. J. and Brocks, G. and Kelly, P. J.},
|
Author = {van der Horst, J.-W. and Bobbert, P. A. and Michels, M. A. J. and Brocks, G. and Kelly, P. J.},
|
||||||
Doi = {10.1103/PhysRevLett.83.4413},
|
Doi = {10.1103/PhysRevLett.83.4413},
|
||||||
@ -14440,22 +14587,6 @@
|
|||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.83.4413},
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.83.4413},
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.83.4413}}
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.83.4413}}
|
||||||
|
|
||||||
@article{Pushchnig_2002,
|
|
||||||
Author = {Puschnig, Peter and Ambrosch-Draxl, Claudia},
|
|
||||||
Doi = {10.1103/PhysRevLett.89.056405},
|
|
||||||
Issue = {5},
|
|
||||||
Journal = {Phys. Rev. Lett.},
|
|
||||||
Month = {Jul},
|
|
||||||
Numpages = {4},
|
|
||||||
Pages = {056405},
|
|
||||||
Publisher = {American Physical Society},
|
|
||||||
Title = {Suppression of Electron-Hole Correlations in 3D Polymer Materials},
|
|
||||||
Url = {https://link.aps.org/doi/10.1103/PhysRevLett.89.056405},
|
|
||||||
Volume = {89},
|
|
||||||
Year = {2002},
|
|
||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevLett.89.056405},
|
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevLett.89.056405}}
|
|
||||||
|
|
||||||
@article{Tiago_2003,
|
@article{Tiago_2003,
|
||||||
Author = {Tiago, Murilo L. and Northrup, John E. and Louie, Steven G.},
|
Author = {Tiago, Murilo L. and Northrup, John E. and Louie, Steven G.},
|
||||||
Date-Modified = {2020-02-05 20:45:49 +0100},
|
Date-Modified = {2020-02-05 20:45:49 +0100},
|
||||||
|
@ -33,11 +33,10 @@
|
|||||||
\newcommand{\Norb}{N_\text{orb}}
|
\newcommand{\Norb}{N_\text{orb}}
|
||||||
\newcommand{\Nocc}{O}
|
\newcommand{\Nocc}{O}
|
||||||
\newcommand{\Nvir}{V}
|
\newcommand{\Nvir}{V}
|
||||||
\newcommand{\IS}{\lambda}
|
|
||||||
|
|
||||||
% operators
|
% operators
|
||||||
\newcommand{\hH}{\Hat{H}}
|
\newcommand{\hH}{\Hat{H}}
|
||||||
\newcommand{\ha}{\Hat{a}}
|
\newcommand{\hS}{\Hat{S}}
|
||||||
|
|
||||||
% methods
|
% methods
|
||||||
\newcommand{\KS}{\text{KS}}
|
\newcommand{\KS}{\text{KS}}
|
||||||
|
156
sfBSE.tex
156
sfBSE.tex
@ -68,7 +68,7 @@ The spin-$\sig$ component of the one-body Green's function reads \cite{ReiningBo
|
|||||||
where $\eta$ is a positive infinitesimal.
|
where $\eta$ is a positive infinitesimal.
|
||||||
As readily seen in Eq.~\eqref{eq:G}, the Green's function can be evaluated at different levels of theory depending on the choice of orbitals and energies, $\MO{p_\sig}$ and $\e{p_\sig}{}$.
|
As readily seen in Eq.~\eqref{eq:G}, the Green's function can be evaluated at different levels of theory depending on the choice of orbitals and energies, $\MO{p_\sig}$ and $\e{p_\sig}{}$.
|
||||||
For example, $G_{\KS}^{\sig}$ is the independent-particle Green's function built with KS orbitals $\MO{p_\sig}^{\KS}(\br)$ and one-electron energies $\e{p_\sig}^{\KS}$.
|
For example, $G_{\KS}^{\sig}$ is the independent-particle Green's function built with KS orbitals $\MO{p_\sig}^{\KS}(\br)$ and one-electron energies $\e{p_\sig}^{\KS}$.
|
||||||
Within self-consistent schemes, these quantities can be replaced by quasiparticle energies and orbitals evaluated within the $GW$ approximation (see below).
|
Within self-consistent schemes, these quantities can be replaced by quasiparticle energies and orbitals evaluated within the $GW$ approximation (see below). \cite{Hedin_1965,Golze_2019}
|
||||||
|
|
||||||
Based on the spin-up and spin-down components of $G$ defined in Eq.~\eqref{eq:G}, one can easily compute the non-interacting polarizability (which is a sum over spins)
|
Based on the spin-up and spin-down components of $G$ defined in Eq.~\eqref{eq:G}, one can easily compute the non-interacting polarizability (which is a sum over spins)
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -88,7 +88,7 @@ Based on this latter ingredient, one can access the dynamically-screened Coulomb
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
which is naturally spin independent as the bare Coulomb interaction $\abs{\br_1 - \br_2}^{-1}$ does not depend on spin coordinates.
|
which is naturally spin independent as the bare Coulomb interaction $\abs{\br_1 - \br_2}^{-1}$ does not depend on spin coordinates.
|
||||||
|
|
||||||
Within the $GW$ formalism, the dynamical screening is computed at the random-phase approximation (RPA) level by considering only the manifold of the spin-conserved neutral excitations.
|
Within the $GW$ formalism, \cite{Hedin_1965,Onida_2002,Golze_2019} the dynamical screening is computed at the random-phase approximation (RPA) level by considering only the manifold of the spin-conserved neutral excitations.
|
||||||
In the orbital basis, the spectral representation of $W$ is
|
In the orbital basis, the spectral representation of $W$ is
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\label{eq:W_spectral}
|
\label{eq:W_spectral}
|
||||||
@ -246,7 +246,7 @@ The same comment applies to the dynamically-screened Coulomb potential $W$ enter
|
|||||||
\subsection{Level of self-consistency}
|
\subsection{Level of self-consistency}
|
||||||
%================================
|
%================================
|
||||||
This is where $GW$ schemes differ.
|
This is where $GW$ schemes differ.
|
||||||
In its simplest perturbative (\ie, one-shot) version, known as {\GOWO}, a single iteration is performed, and the quasiparticle energies $\eGOWO{p_\sig}$ are obtained by solving the frequency-dependent quasiparticle equation
|
In its simplest perturbative (\ie, one-shot) version, known as {\GOWO}, \cite{Strinati_1980,Hybertsen_1985a,Hybertsen_1986,Godby_1988,Linden_1988,Northrup_1991,Blase_1994,Rohlfing_1995,Shishkin_2007} a single iteration is performed, and the quasiparticle energies $\eGW{p_\sig}$ are obtained by solving the frequency-dependent quasiparticle equation
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:QP-eq}
|
\label{eq:QP-eq}
|
||||||
\omega = \e{p_\sig}{} + \Sig{p_\sig}{\xc}(\omega) - V_{p_\sig}^{\xc}
|
\omega = \e{p_\sig}{} + \Sig{p_\sig}{\xc}(\omega) - V_{p_\sig}^{\xc}
|
||||||
@ -257,17 +257,18 @@ where $\Sig{p_\sig}{\xc}(\omega) \equiv \Sig{p_\sig p_\sig}{\xc}(\omega)$ and it
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
Because, from a practical point of view, one is usually interested by the so-called quasiparticle solution (or peak), the quasiparticle equation \eqref{eq:QP-eq} is often linearized around $\omega = \e{p_\sig}^{\KS}$, yielding
|
Because, from a practical point of view, one is usually interested by the so-called quasiparticle solution (or peak), the quasiparticle equation \eqref{eq:QP-eq} is often linearized around $\omega = \e{p_\sig}^{\KS}$, yielding
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\eGOWO{p_\sig}
|
\eGW{p_\sig}
|
||||||
= \e{p_\sig}^{\KS} + Z_{p_\sig} [\Sig{p_\sig}{\xc}(\e{p_\sig}^{\KS}) - V_{p_\sig}^{\xc} ]
|
= \e{p_\sig}^{\KS} + Z_{p_\sig} [\Sig{p_\sig}{\xc}(\e{p_\sig}^{\KS}) - V_{p_\sig}^{\xc} ]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:Z_GW}
|
||||||
Z_{p_\sig} = \qty[ 1 - \left. \pdv{\Sig{p_\sig}{\xc}(\omega)}{\omega} \right|_{\omega = \e{p_\sig}^{\KS}} ]^{-1}
|
Z_{p_\sig} = \qty[ 1 - \left. \pdv{\Sig{p_\sig}{\xc}(\omega)}{\omega} \right|_{\omega = \e{p_\sig}^{\KS}} ]^{-1}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is a renormalization factor which also represents the spectral weight of the quasiparticle solution.
|
is a renormalization factor (with $0 \le Z_{p_\sig} \le 1$) which also represents the spectral weight of the quasiparticle solution.
|
||||||
In addition to the principal quasiparticle peak which, in a well-behaved case, contains most of the spectral weight, the frequency-dependent quasiparticle equation \eqref{eq:QP-eq} generates a finite number of satellite resonances with smaller weights.
|
In addition to the principal quasiparticle peak which, in a well-behaved case, contains most of the spectral weight, the frequency-dependent quasiparticle equation \eqref{eq:QP-eq} generates a finite number of satellite resonances with smaller weights.
|
||||||
|
|
||||||
Within the ``eigenvalue'' self-consistent $GW$ scheme (known as ev$GW$), several iterations are performed during which only the one-electron energies entering the definition of the Green's function [see Eq.~\eqref{eq:G}] are updated by the quasiparticle energies obtained at the previous iteration (the corresponding orbitals remain evaluated at the KS level).
|
Within the ``eigenvalue'' self-consistent $GW$ scheme (known as ev$GW$), \cite{Hybertsen_1986,Shishkin_2007,Blase_2011,Faber_2011,Rangel_2016,Kaplan_2016,Gui_2018} several iterations are performed during which only the one-electron energies entering the definition of the Green's function [see Eq.~\eqref{eq:G}] are updated by the quasiparticle energies obtained at the previous iteration (the corresponding orbitals remain evaluated at the KS level).
|
||||||
|
|
||||||
Finally, within the quasiparticle self-consistent $GW$ (qs$GW$) scheme, both the one-electron energies and the orbitals are updated until convergence is reached.
|
Finally, within the quasiparticle self-consistent $GW$ (qs$GW$) scheme, both the one-electron energies and the orbitals are updated until convergence is reached.
|
||||||
These are obtained via the diagonalization of an effective Fock matrix which includes explicitly a frequency-independent and hermitian self-energy defined as
|
These are obtained via the diagonalization of an effective Fock matrix which includes explicitly a frequency-independent and hermitian self-energy defined as
|
||||||
@ -276,12 +277,17 @@ These are obtained via the diagonalization of an effective Fock matrix which inc
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%================================
|
%================================
|
||||||
\subsection{The Bethe-Salpeter equation formalism}
|
\section{Unrestricted Bethe-Salpeter equation formalism}
|
||||||
%================================
|
%================================
|
||||||
Like its TD-DFT cousin, BSE deals with the calculation of (neutral) optical excitations as measured by absorption spectroscopy. \cite{Salpeter_1951,Strinati_1988}
|
Like its TD-DFT cousin, the BSE formalism \cite{Salpeter_1951,Strinati_1988,Albrecht_1998,Rohlfing_1998,Benedict_1998,vanderHorst_1999} deals with the calculation of (neutral) optical excitations as measured by absorption spectroscopy. \cite{Rohlfing_1999a,Horst_1999,Puschnig_2002,Tiago_2003,Boulanger_2014,Jacquemin_2015a,Bruneval_2015,Jacquemin_2015b,Hirose_2015,Jacquemin_2017a,Jacquemin_2017b,Rangel_2017,Krause_2017,Gui_2018}
|
||||||
Using the BSE formalism, one can access the spin-conserved and spin-flip excitations.
|
Using the BSE formalism, one can access the spin-conserved and spin-flip excitations.
|
||||||
In a nutshell, BSE builds on top of a $GW$ calculation by adding up excitonic effects (\ie, the electron-hole binding energy) to the $GW$ fundamental gap which is itself a corrected version of the KS gap.
|
In a nutshell, BSE builds on top of a $GW$ calculation by adding up excitonic effects (\ie, the electron-hole binding energy) to the $GW$ fundamental gap which is itself a corrected version of the KS gap.
|
||||||
The purpose of the underlying $GW$ calculation is to provide quasiparticle energies and a dynamically-screened Coulomb potential that are used to build the BSE Hamiltonian from which the vertical excitations of the system are going to be extracted.
|
The purpose of the underlying $GW$ calculation is to provide quasiparticle energies and a dynamically-screened Coulomb potential that are used to build the BSE Hamiltonian from which the vertical excitations of the system are extracted.
|
||||||
|
|
||||||
|
%================================
|
||||||
|
\subsection{Static approximation}
|
||||||
|
%================================
|
||||||
|
|
||||||
|
|
||||||
The Dyson equation that links the generalized four-point susceptibility $L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)$ and the BSE kernel $\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)$ is
|
The Dyson equation that links the generalized four-point susceptibility $L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)$ and the BSE kernel $\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)$ is
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
@ -329,7 +335,7 @@ Within the static approximation which consists in neglecting the frequency depen
|
|||||||
\bY{m}{\BSE} \\
|
\bY{m}{\BSE} \\
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Defining $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega = 0)$, the general expressions of the BSE matrix elements are
|
Defining the elements of the static screening as $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega = 0)$, the general expressions of the BSE matrix elements are
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_BSE-A}
|
\label{eq:LR_BSE-A}
|
||||||
@ -339,7 +345,7 @@ Defining $W^{\stat}_{p_\sig q_\sig,r_\sigp s_\sigp} = W_{p_\sig q_\sig,r_\sigp s
|
|||||||
\B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
|
\B{i_\sig a_\tau,j_\sigp b_\taup}{\BSE} & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
from which we obtain, at the BSE level, the following expressions for the spin-conserved and spin-flip excitations:
|
from which we obtain the following expressions for the spin-conserved and spin-flip BSE excitations:
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_BSE-Asc}
|
\label{eq:LR_BSE-Asc}
|
||||||
@ -360,26 +366,31 @@ At this stage, it is of particular interest to discuss the form of the spin-flip
|
|||||||
As readily seen from Eq.~\eqref{eq:LR_RPA-Asf}, at the RPA level, the spin-flip excitations are given by the difference of one-electron energies, hence missing out on key exchange and correlation effects.
|
As readily seen from Eq.~\eqref{eq:LR_RPA-Asf}, at the RPA level, the spin-flip excitations are given by the difference of one-electron energies, hence missing out on key exchange and correlation effects.
|
||||||
This is also the case at the TD-DFT level when one relies on (semi-)local functionals.
|
This is also the case at the TD-DFT level when one relies on (semi-)local functionals.
|
||||||
This explains why most of spin-flip TD-DFT calculations are performed with hybrid functionals containing a substantial amount of Hartree-Fock exchange as only the exact exchange integral of the form $\ERI{i_\sig j_\sig}{b_\bsig a_\bsig}$ survive spin-symmetry requirements.
|
This explains why most of spin-flip TD-DFT calculations are performed with hybrid functionals containing a substantial amount of Hartree-Fock exchange as only the exact exchange integral of the form $\ERI{i_\sig j_\sig}{b_\bsig a_\bsig}$ survive spin-symmetry requirements.
|
||||||
At the BSE level, these matrix elements are, of course, also present thanks to the contribution of $W^{\stat}_{i_\sig j_\sig,b_\bsig a_\bsig}$ but it also includes correlation effects as evidenced in Eq.~\eqref{eq:W_spectral}.
|
At the BSE level, these matrix elements are, of course, also present thanks to the contribution of $W^{\stat}_{i_\sig j_\sig,b_\bsig a_\bsig}$ as evidenced in Eq.~\eqref{eq:W_spectral} but it also includes correlation effects.
|
||||||
|
|
||||||
%================================
|
%================================
|
||||||
\subsection{Dynamical correction}
|
\subsection{Dynamical correction}
|
||||||
%================================
|
%================================
|
||||||
The dynamical correction to the static BSE kernel is defined in the Tamm-Dancoff approximation as \cite{Strinati_1988,Rohlfing_2000,Ma_2009a,Ma_2009b,Romaniello_2009b,Sangalli_2011,Loos_2020e}
|
In order to go beyond the ubiquitous static approximation of BSE \cite{Strinati_1988,Rohlfing_2000,Sottile_2003,Myohanen_2008,Ma_2009a,Ma_2009b,Romaniello_2009b,Sangalli_2011,Huix-Rotllant_2011,Sakkinen_2012,Zhang_2013,Rebolini_2016,Olevano_2019,Lettmann_2019} (which is somehow similar to the adiabatic approximation of TD-DFT \cite{Casida_2005,Huix-Rotllant_2011,Casida_2016,Maitra_2004,Cave_2004,Elliott_2011,Maitra_2012}), we have recently implemented, following Strinati's seminal work \cite{Strinati_1982,Strinati_1984,Strinati_1988} (see also the work of Romaniello \textit{et al.} \cite{Romaniello_2009b} and Sangalli \textit{et al.} \cite{Sangalli_2011}), a renormalized first-order perturbative correction in order to take into consideration the dynamical nature of the screened Coulomb potential $W$. \cite{Loos_2020e,Authier_2020}
|
||||||
|
This dynamical correction to the static BSE kernel (dubbed as dBSE in the following) does permit to recover additional relaxation effects coming from higher excitations.
|
||||||
|
|
||||||
|
Our implementation follows closely the work of Rohlfing and co-workers \cite{Rohlfing_2000,Ma_2009a,Ma_2009b,Baumeier_2012b} in which they computed the dynamical correction in the TDA and plasmon-pole approximation.
|
||||||
|
However, our scheme goes beyond the plasmon-pole approximation as the spectral representation of the dynamically-screened Coulomb potential is computed exactly at the RPA level consistently with the underlying $GW$ calculation:
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\widetilde{W}_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
|
\widetilde{W}_{p_\sig q_\sig,r_\sigp s_\sigp}(\omega) = \ERI{p_\sig q_\sig}{r_\sigp s_\sigp}
|
||||||
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
|
+ \sum_m \ERI{p_\sig q_\sig}{m}\ERI{r_\sigp s_\sigp}{m}
|
||||||
\\
|
\\
|
||||||
\times \qty[ \frac{1}{\omega - (\e{s_\sigp}{} - \e{q_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} + \frac{1}{\omega - (\e{r_\sigp}{} - \e{p_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} ]
|
\times \Bigg[ \frac{1}{\omega - (\e{s_\sigp}{} - \e{q_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta}
|
||||||
|
\\
|
||||||
|
+ \frac{1}{\omega - (\e{r_\sigp}{} - \e{p_\sig}{}) - \Om{m}{\spc,\RPA} + i \eta} \Bigg]
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
The dBSE non-linear response problem is
|
||||||
\begin{equation}
|
\begin{multline}
|
||||||
\label{eq:LR-dyn}
|
\label{eq:LR-dyn}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\bA{}{\dBSE}(\omega) & \bB{}{\dBSE}(\omega)
|
\bA{}{\dBSE}(\Om{m}{\dBSE}) & \bB{}{\dBSE}(\Om{m}{\dBSE})
|
||||||
\\
|
\\
|
||||||
-\bB{}{\dBSE}(-\omega) & -\bA{}{\dBSE}(-\omega)
|
-\bB{}{\dBSE}(-\Om{m}{\dBSE}) & -\bA{}{\dBSE}(-\Om{m}{\dBSE})
|
||||||
\\
|
\\
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
\cdot
|
\cdot
|
||||||
@ -387,14 +398,15 @@ The dynamical correction to the static BSE kernel is defined in the Tamm-Dancoff
|
|||||||
\bX{m}{\dBSE} \\
|
\bX{m}{\dBSE} \\
|
||||||
\bY{m}{\dBSE} \\
|
\bY{m}{\dBSE} \\
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
|
\\
|
||||||
=
|
=
|
||||||
\Om{m}{\dBSE}
|
\Om{m}{\dBSE}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\bX{m}{\dBSE} \\
|
\bX{m}{\dBSE} \\
|
||||||
\bY{m}{\dBSE} \\
|
\bY{m}{\dBSE} \\
|
||||||
\end{pmatrix}
|
\end{pmatrix}
|
||||||
\end{equation}
|
\end{multline}
|
||||||
|
where the dynamical matrices are generally defined as
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:LR_dBSE-A}
|
\label{eq:LR_dBSE-A}
|
||||||
@ -404,8 +416,8 @@ The dynamical correction to the static BSE kernel is defined in the Tamm-Dancoff
|
|||||||
\B{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega)
|
\B{i_\sig a_\tau,j_\sigp b_\taup}{\dBSE}(\omega) & = \B{i_\sig a_\tau,j_\sigp b_\taup}{\RPA} - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega)
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
|
from which one can easily obtained the matrix elements for the spin-conserved and spin-flip manifolds similarly to Eqs.~\eqref{eq:LR_BSE-Asc}, \eqref{eq:LR_BSE-Bsc}, \eqref{eq:LR_BSE-Asf}, and \eqref{eq:LR_BSE-Bsf}.
|
||||||
|
Following Rayleigh-Schr\"odinger perturbation theory, we then decompose the non-linear eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static (\ie, linear) reference and a first-order dynamic (\ie, non-linear) perturbation such that
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\label{eq:LR-PT}
|
\label{eq:LR-PT}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
@ -446,94 +458,37 @@ and
|
|||||||
\B{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
|
\B{i_\sig a_\tau,j_\sigp b_\taup}{(1)}(\omega) & = - \delta_{\sig \sigp} \widetilde{W}_{i_\sig b_\taup,j_\sigp a_\tau}(\omega) + \delta_{\sig \sigp} W^{\stat}_{i_\sig b_\taup,j_\sigp a_\tau}
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
|
The dBSE excitation energies are then obtained via
|
||||||
\begin{subequations}
|
|
||||||
\begin{gather}
|
|
||||||
\Om{m}{\dBSE} = \Om{m}{(0)} + \Om{m}{(1)} + \ldots
|
|
||||||
\\
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{m}{\dBSE} \\
|
|
||||||
\bY{m}{\dBSE} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
=
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{m}{(0)} \\
|
|
||||||
\bY{m}{(0)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
+
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{m}{(1)} \\
|
|
||||||
\bY{m}{(1)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
+ \ldots
|
|
||||||
\end{gather}
|
|
||||||
\end{subequations}
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:LR-BSE-stat}
|
\Om{m}{\dBSE} = \Om{m}{\BSE} + \zeta_{m} \Om{m}{(1)}
|
||||||
\begin{pmatrix}
|
|
||||||
\bA{}{(0)} & \bB{}{(0)} \\
|
|
||||||
-\bB{}{(0)} & -\bA{}{(0)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
\cdot
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{S}{(0)} \\
|
|
||||||
\bY{S}{(0)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
=
|
|
||||||
\Om{m}{(0)}
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{m}{(0)} \\
|
|
||||||
\bY{m}{(0)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
where $\Om{m}{\BSE} \equiv \Om{m}{(0)}$ are the static (zeroth-order) BSE excitation energies obtained by solving Eq.~\eqref{eq:LR-BSE}, and
|
||||||
\begin{equation}
|
|
||||||
\label{eq:Om1}
|
|
||||||
\Om{m}{(1)} =
|
|
||||||
\T{\begin{pmatrix}
|
|
||||||
\bX{m}{(0)} \\
|
|
||||||
\bY{m}{(0)} \\
|
|
||||||
\end{pmatrix}}
|
|
||||||
\cdot
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bA{}{(1)}(\Om{m}{(0)}) & \bB{}{(1)}(\Om{m}{(0)}) \\
|
|
||||||
-\bB{}{(1)}(-\Om{m}{(0)}) & -\bA{}{(1)}(-\Om{m}{(0)}) \\
|
|
||||||
\end{pmatrix}
|
|
||||||
\cdot
|
|
||||||
\begin{pmatrix}
|
|
||||||
\bX{m}{(0)} \\
|
|
||||||
\bY{m}{(0)} \\
|
|
||||||
\end{pmatrix}
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:Om1-TDA}
|
\label{eq:Om1-TDA}
|
||||||
\Om{S}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{}{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}
|
\Om{m}{(1)} = \T{(\bX{m}{\BSE})} \cdot \bA{}{(1)}(\Om{m}{\BSE}) \cdot \bX{m}{\BSE}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
are first-order corrections (with $\bX{m}{\BSE} \equiv \bX{m}{(0)}$) obtained within the dynamical TDA (dTDA) with the renormalization factor
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:Z}
|
\label{eq:Z}
|
||||||
Z_{m} = \qty[ 1 - \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{}{(1)}(\Om{m}{})}{\Om{S}{}} \right|_{\Om{m}{} = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}
|
\zeta_{m} = \qty[ 1 - \T{(\bX{m}{\BSE})} \cdot \left. \pdv{\bA{}{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{\BSE}} \cdot \bX{m}{\BSE} ]^{-1}
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
\begin{equation}
|
|
||||||
\Om{m}{\dBSE} = \Om{m}{(0)} + Z_{m} \Om{m}{(1)}
|
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
which, unlike the $GW$ case [see Eq.~\eqref{eq:Z_GW}], is not restricted to be between $0$ and $1$.
|
||||||
|
In most cases, the value of $\zeta_{m}$ is close to unity which indicates that the perturbative expansion behaves nicely.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\subsection{Oscillator strengths}
|
\subsection{Oscillator strengths}
|
||||||
\label{sec:os}
|
\label{sec:os}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
For the spin-conserved transition, the $x$ component of the transition dipole moment is
|
For the spin-conserved transitions, the $x$ component of the transition dipole moment is
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mu_{x,m}^{\spc} = \sum_{ia\sig} (i_\sig|x|a_\sig)(\bX{m}{\spc}+\bY{m}{\spc})_{i_\sig a_\sig}
|
\mu_{x,m}^{\spc} = \sum_{ia\sig} (i_\sig|x|a_\sig)(\bX{m}{\spc}+\bY{m}{\spc})_{i_\sig a_\sig}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
with
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
(p_\sig|x|q_\sigp) = \int \MO{p_\sig}(\br) \, x \, \MO{q_\sigp}(\br) d\br
|
(p_\sig|x|q_\sigp) = \int \MO{p_\sig}(\br) \, x \, \MO{q_\sigp}(\br) d\br
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and the total oscillator strength is given by
|
are one-electron integrals in the orbital basis.
|
||||||
|
The total oscillator strength is given by
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
f_{m}^{\spc} = \frac{2}{3} \Om{m}{\spc} \qty[ \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 ]
|
f_{m}^{\spc} = \frac{2}{3} \Om{m}{\spc} \qty[ \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 + \qty(\mu_{x,m}^{\spc})^2 ]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -543,24 +498,29 @@ For spin-flip transitions, we have $f_{m}^{\spf} = 0$ as the transition matrix e
|
|||||||
\subsection{Spin contamination}
|
\subsection{Spin contamination}
|
||||||
\label{sec:spin}
|
\label{sec:spin}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
One of the key issues of linear response formalism based on unrestricted references is spin contamination.
|
||||||
|
As nicely explained in Ref.~\onlinecite{Casanova_2020}, there are two sources of spin contamination: i) spin contamination of the reference configuration for which, for example, $\expval{\hS^2} > 2$ for a high-spin triplets, and ii) spin-contamination of the excited states due to spin incompleteness of the configuration interaction expansion.
|
||||||
|
The latter issue is an important source of spin contamination in the present context as BSE is limited to single excitations with respect to the reference configuration.
|
||||||
|
Specific schemes have been developed to palliate these shortcomings and we refer the interested reader to Ref.~\onlinecite{Casanova_2020} for a detailed discussion on this matter.
|
||||||
|
|
||||||
|
In order to monitor closely how contaminated are these states, we compute
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\expval{S^2}_m = \expval{S^2}_0 + \Delta \expval{S^2}_m
|
\expval{\hS^2}_m = \expval{\hS^2}_0 + \Delta \expval{\hS^2}_m
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\expval{S^2}_{0}
|
\expval{\hS^2}_{0}
|
||||||
= \frac{n_{\up} - n_{\dw}}{2} \qty( \frac{n_{\up} - n_{\dw}}{2} + 1 )
|
= \frac{n_{\up} - n_{\dw}}{2} \qty( \frac{n_{\up} - n_{\dw}}{2} + 1 )
|
||||||
+ n_{\dw} - \sum_p (p_{\up}|p_{\dw})^2
|
+ n_{\dw} - \sum_p (p_{\up}|p_{\dw})^2
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where
|
is the expectation value of $\hS^2$ for the reference configuration, the first term correspoding to the exact value of $\expval{\hS^2}$, and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
\label{eq:OV}
|
||||||
(p_\sig|q_\sigp) = \int \MO{p_\sig}(\br) \MO{q_\sigp}(\br) d\br
|
(p_\sig|q_\sigp) = \int \MO{p_\sig}(\br) \MO{q_\sigp}(\br) d\br
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is the overlap between spin-up and spin-down orbitals.
|
are overlap integrals between spin-up and spin-down orbitals.
|
||||||
|
|
||||||
The explicit expressions of $\Delta \expval{S^2}_m^{\spc}$ and $\Delta \expval{S^2}_m^{\spf}$ can be found in the Appendix of Ref.~\onlinecite{Li_2010} for spin-conserved and spin-flip excitations, and are functions of the $\bX{m}{}$ and $\bY{m}{}$ vectors and the orbital overlaps.
|
For a given single excitation $m$, the explicit expressions of $\Delta \expval{\hS^2}_m^{\spc}$ and $\Delta \expval{\hS^2}_m^{\spf}$ can be found in the Appendix of Ref.~\onlinecite{Li_2011a} for spin-conserved and spin-flip excitations, and are functions of the $\bX{m}{}$ and $\bY{m}{}$ vectors and the orbital overlaps defined in Eq.~\eqref{eq:OV}.
|
||||||
As explained in Ref.~\onlinecite{Casanova_2020}, there are two sources of spin contamination: i) spin contamination of the reference, and ii) spin-contamination of the excited states due to the spin incompleteness.
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Computational details}
|
\section{Computational details}
|
||||||
|
Loading…
Reference in New Issue
Block a user