10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 22:53:52 +01:00
QuantumPackage/src/mo_optimization/org/gradient_opt.org
2023-04-18 13:56:30 +02:00

9.7 KiB

Gradient

The gradient of the CI energy with respects to the orbital rotation is: (C-c C-x C-l) $$ G(p,q) = \mathcal{P}_{pq} \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) + \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs}) \right] $$

$$ \mathcal{P}_{pq}= 1 - (p \leftrightarrow q) $$

$$ G(p,q) = \left[ \sum_r (h_p^r \gamma_r^q - h_r^q \gamma_p^r) + \sum_{rst}(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs}) \right] - \left[ \sum_r (h_q^r \gamma_r^p - h_r^p \gamma_q^r) + \sum_{rst}(v_{qt}^{rs} \Gamma_{rs}^{pt} - v_{rs}^{pt} \Gamma_{qt}^{rs}) \right] $$

Where p,q,r,s,t are general spatial orbitals mo_num : the number of molecular orbitals $$h$$ : One electron integrals $$\gamma$$ : One body density matrix (state average in our case) $$v$$ : Two electron integrals $$\Gamma$$ : Two body density matrice (state average in our case)

The gradient is a mo_num by mo_num matrix, p,q,r,s,t take all the values between 1 and mo_num (1 and mo_num include).

To do that we compute $$G(p,q)$$ for all the pairs (p,q).

Source : Seniority-based coupled cluster theory

  1. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384

Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo

  1. Scuseria

Compute the gradient of energy with respects to orbital rotations

Provided:

mo_num integer number of MOs
mo_one_e_integrals(mo_num,mo_num) double precision mono_electronic integrals
one_e_dm_mo(mo_num,mo_num) double precision one e- density matrix
two_e_dm_mo(mo_num,mo_num,mo_num,mo_num) double precision two e- density matrix

Input:

n integer mo_num*(mo_num-1)/2

Output:

v_grad(n) double precision the gradient
max_elem double precision maximum element of the gradient

Internal:

grad(mo_num,mo_num) double precison gradient before the tranformation in a vector
A((mo_num,mo_num) doubre precision gradient after the permutations
norm double precision norm of the gradient
p, q integer indexes of the element in the matrix grad
i integer index for the tranformation in a vector
r, s, t integer indexes dor the sums
t1, t2, t3 double precision t3 = t2 - t1, time to compute the gradient
t4, t5, t6 double precission t6 = t5 - t4, time to compute each element
tmp_bi_int_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the bi-electronic integrals
tmp_2rdm_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the two e- density matrix
tmp_accu(mo_num,mo_num) double precision temporary array

Function:

get_two_e_integral double precision bi-electronic integrals
dnrm2 double precision (Lapack) norm
subroutine gradient_opt(n,v_grad,max_elem)
  use omp_lib
  include 'constants.h'

  implicit none
  
  ! Variables
  
  ! in
  integer, intent(in) :: n
  
  ! out
  double precision, intent(out) :: v_grad(n), max_elem

  ! internal
  double precision, allocatable :: grad(:,:),A(:,:)
  double precision              :: norm
  integer                       :: i,p,q,r,s,t
  double precision              :: t1,t2,t3,t4,t5,t6

  double precision, allocatable :: tmp_accu(:,:)
  double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:)

  ! Functions
  double precision :: get_two_e_integral, dnrm2

  
  print*,''
  print*,'---gradient---'

  ! Allocation of shared arrays
  allocate(grad(mo_num,mo_num),A(mo_num,mo_num)) 

  ! Initialization omp
  call omp_set_max_active_levels(1)

  !$OMP PARALLEL                                                 &
      !$OMP PRIVATE(                                             &
      !$OMP   p,q,r,s,t,                                         &
      !$OMP   tmp_accu, tmp_bi_int_3, tmp_2rdm_3)                &
      !$OMP SHARED(grad, one_e_dm_mo, mo_num,mo_one_e_integrals, &
      !$OMP mo_integrals_map,t4,t5,t6)                           &
      !$OMP DEFAULT(SHARED)
 
  ! Allocation of private arrays
  allocate(tmp_accu(mo_num,mo_num))
  allocate(tmp_bi_int_3(mo_num,mo_num,mo_num))
  allocate(tmp_2rdm_3(mo_num,mo_num,mo_num))

Calculation

Initialization

  !$OMP DO
  do q = 1, mo_num
    do p = 1,mo_num
      grad(p,q) = 0d0
    enddo
  enddo
  !$OMP END DO

Term 1

Without optimization the term 1 is :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num grad(p,q) = grad(p,q) &

  • mo_one_e_integrals(p,r) * one_e_dm_mo(r,q) &
  • mo_one_e_integrals(r,q) * one_e_dm_mo(p,r)

enddo enddo enddo

Since the matrix multiplication A.B is defined like :

\begin{equation} c_{ij} = \sum_k a_{ik}.b_{kj} \end{equation}

The previous equation can be rewritten as a matrix multplication

  !****************
  ! Opt first term
  !****************

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  call dgemm('N','N',mo_num,mo_num,mo_num,1d0,mo_one_e_integrals,&
  mo_num,one_e_dm_mo,mo_num,0d0,tmp_accu,mo_num)
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      grad(p,q) = grad(p,q) + (tmp_accu(p,q) - tmp_accu(q,p))

    enddo
  enddo 
  !$OMP END DO
  
  !$OMP MASTER
  CALL wall_TIME(t5)
  t6 = t5-t4
  print*,'Gradient, first term (s) :', t6 
  !$OMP END MASTER

Term 2

Without optimization the second term is :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num do t= 1, mo_num

grad(p,q) = grad(p,q) &

  • get_two_e_integral(p,t,r,s,mo_integrals_map) * two_e_dm_mo(r,s,q,t) &
  • get_two_e_integral(r,s,q,t,mo_integrals_map) * two_e_dm_mo(p,t,r,s)

enddo enddo enddo enddo enddo

Using the bielectronic integral properties : get_two_e_integral(p,t,r,s,mo_integrals_map) = get_two_e_integral(r,s,p,t,mo_integrals_map)

Using the two body matrix properties : two_e_dm_mo(p,t,r,s) = two_e_dm_mo(r,s,p,t)

t is one the right, we can put it on the external loop and create 3 indexes temporary array r,s can be seen as one index

By doing so, a matrix multiplication appears

  !*****************
  ! Opt second term  
  !*****************

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER 
 
  !$OMP DO
  do t = 1, mo_num
    
    do p = 1, mo_num
      do s = 1, mo_num
        do r = 1, mo_num
            
          tmp_bi_int_3(r,s,p) = get_two_e_integral(r,s,p,t,mo_integrals_map)
         
        enddo
      enddo
    enddo

    do q = 1, mo_num
      do s = 1, mo_num
        do r = 1, mo_num
             
           tmp_2rdm_3(r,s,q) = two_e_dm_mo(r,s,q,t)
  
        enddo
      enddo
    enddo

    call dgemm('T','N',mo_num,mo_num,mo_num*mo_num,1d0,tmp_bi_int_3,&
      mo_num*mo_num,tmp_2rdm_3,mo_num*mo_num,0d0,tmp_accu,mo_num)

    !$OMP CRITICAL   
    do q = 1, mo_num
      do p = 1, mo_num

        grad(p,q) = grad(p,q) + tmp_accu(p,q) - tmp_accu(q,p)

      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6 = t5-t4
  print*,'Gradient second term (s) : ', t6
  !$OMP END MASTER

Deallocation of private arrays

  deallocate(tmp_bi_int_3,tmp_2rdm_3,tmp_accu)

  !$OMP END PARALLEL

  call omp_set_max_active_levels(4)

Permutation, 2D matrix -> vector, transformation

In addition there is a permutation in the gradient formula :

\begin{equation} P_{pq} = 1 - (p <-> q) \end{equation}

We need a vector to use the gradient. Here the gradient is a antisymetric matrix so we can transform it in a vector of length mo_num*(mo_num-1)/2.

Here we do these two things at the same time.

  do i=1,n
    call vec_to_mat_index(i,p,q)
    v_grad(i)=(grad(p,q) - grad(q,p))
  enddo  

  ! Debug, diplay the vector containing the gradient elements 
  if (debug) then  
    print*,'Vector containing the gradient :'
    write(*,'(100(F10.5))') v_grad(1:n)
  endif

Norm of the gradient

The norm can be useful.

  norm = dnrm2(n,v_grad,1)
  print*, 'Gradient norm : ', norm

Maximum element in the gradient

The maximum element in the gradient is very important for the convergence criterion of the Newton method.

  ! Max element of the gradient
  max_elem = 0d0
  do i = 1, n
    if (ABS(v_grad(i)) > ABS(max_elem)) then
      max_elem = v_grad(i)
    endif
  enddo

  print*,'Max element in the gradient :', max_elem  

  ! Debug, display the matrix containting the gradient elements
  if (debug) then
    ! Matrix gradient
    A = 0d0
    do q=1,mo_num
      do p=1,mo_num
        A(p,q) = grad(p,q) - grad(q,p)
      enddo
    enddo
    print*,'Matrix containing the gradient :'
    do i = 1, mo_num
      write(*,'(100(F10.5))') A(i,1:mo_num)
    enddo
  endif

Deallocation of shared arrays and end

  deallocate(grad,A)

  print*,'---End gradient---'

  end subroutine