10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-08 15:13:48 +01:00
QuantumPackage/src/tc_bi_ortho/normal_ordered.irp.f
2023-02-07 17:07:49 +01:00

320 lines
11 KiB
Fortran

BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordering of the three body interaction on the HF density
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree_aba,hthree_aaa,hthree_aab
double precision :: wall0,wall1
PROVIDE N_int
allocate( occ(N_int*bit_kind_size,2) )
allocate( key_i_core(N_int,2) )
if(core_tc_op) then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth = 0.d0
print*,'Providing normal_two_body_bi_orth ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
! opposite spin double excitations
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
! same spin double excitations with opposite spin contributions
if(h1<h2.and.p1.gt.p2)then
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
! same spin double excitations with same spin contributions
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,'Wall time for normal_two_body_bi_orth ',wall1-wall0
deallocate( occ )
deallocate( key_i_core )
END_PROVIDER
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, integral
!!!! double alpha/beta
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
int_exc_12 = -1.d0 * integral
hthree += 2.d0 * int_direct - 1.d0 * ( int_exc_13 + int_exc_12)
enddo
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
int_exc_12 = -1.d0 * integral
hthree += 1.d0 * int_direct - 0.5d0* ( int_exc_13 + int_exc_12)
enddo
end subroutine give_aba_contraction
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: h1, p1, h2, p2, i
integer :: hh1, hh2, pp1, pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op)then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth_ab = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for same spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i,ii,j,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree_aab, hthree_aaa
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op)then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
else
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
endif
normal_two_body_bi_orth_aa_bb = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1 , n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1 , n_act_orb
p2 = list_act(pp2)
if(h1<h2.and.p1.gt.p2)then
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii,i
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
double precision :: integral,int_exc_l,int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
int_exc_ll= -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
int_exc_12= -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13= -1.d0 * integral
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 )
enddo
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
int_exc_ll= -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
int_exc_12= -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13= -1.d0 * integral
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 ))
enddo
end subroutine give_aaa_contraction
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
double precision :: integral, int_exc_l, int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(p2,p1,i,h2,h1,i,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2,i,h2,h1,i,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct - int_exc_23
enddo
end subroutine give_aab_contraction