10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 20:33:20 +01:00

added tc_bi_ortho

This commit is contained in:
eginer 2023-02-07 17:07:49 +01:00
parent 00081668f2
commit 5bd19df0bc
44 changed files with 7864 additions and 0 deletions

View File

@ -0,0 +1,500 @@
! ---
subroutine davidson_general_diag_dressed_ext_rout_nonsym_b1space(u_in, H_jj, Dress_jj,energies, sze, N_st, N_st_diag_in, converged, hcalc)
use mmap_module
BEGIN_DOC
! Generic modified-Davidson diagonalization
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
implicit none
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
logical, intent(inout) :: converged
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
character*(16384) :: write_buffer
integer :: iter, N_st_diag
integer :: i, j, k, l, m
integer :: iter2, itertot
logical :: disk_based
integer :: shift, shift2, itermax
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: to_print(2,N_st)
double precision :: r1, r2, alpha
double precision :: cpu, wall
double precision :: cmax
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
double precision, allocatable :: U(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
double precision :: lambda_tmp
integer, allocatable :: i_omax(:)
double precision, allocatable :: U_tmp(:), overlap(:)
double precision, allocatable :: W(:,:)
!double precision, pointer :: W(:,:)
double precision, external :: u_dot_v, u_dot_u
include 'constants.include.F'
N_st_diag = N_st_diag_in
! print*,'trial vector'
do i = 1, sze
if(isnan(u_in(i,1)))then
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
print*,i,u_in(i,1)
stop
else if (dabs(u_in(i,1)).lt.1.d-16)then
u_in(i,1) = 0.d0
endif
enddo
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if(N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
provide threshold_nonsym_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_S2_u_0_nstates_zmq
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if(nproc_target == 0) then
call check_mem(r1, irp_here)
nproc_target = 1
exit
endif
if(r1+rss < qp_max_mem) then
exit
endif
if(itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m = 0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6, N_st, 'Number of states')
call write_int(6, N_st_diag, 'Number of states in diagonalization')
call write_int(6, sze, 'Number of basis functions')
call write_int(6, nproc_target, 'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if(disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
! ---
allocate( W(sze,N_st_diag*itermax) )
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
lambda(N_st_diag*itermax), &
residual_norm(N_st_diag), &
i_omax(N_st) &
)
U = 0.d0
h = 0.d0
y = 0.d0
lambda = 0.d0
residual_norm = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
! Initialize from N_st to N_st_diag with gaussian random numbers
! to be sure to have overlap with any eigenvectors
do k = N_st+1, N_st_diag
u_in(k,k) = 10.d0
do i = 1, sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
! Normalize all states
do k = 1, N_st_diag
call normalize(u_in(1,k), sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
! ---
itertot = 0
do while (.not.converged)
itertot = itertot + 1
if(itertot == 8) then
exit
endif
do iter = 1, itermax-1
shift = N_st_diag * (iter-1)
shift2 = N_st_diag * iter
if( (iter > 1) .or. (itertot == 1) ) then
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U, size(U, 1), sze, shift2)
call ortho_qr(U, size(U, 1), sze, shift2)
! W = H U
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
call dress_calc(W(1,shift+1), Dress_jj, U(1,shift+1), N_st_diag, sze)
else
! Already computed in update below
continue
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
, U, size(U, 1), W, size(W, 1) &
, 0.d0, h, size(h, 1) )
! Diagonalize h y = lambda y
! ---------------------------
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
! Express eigenvectors of h in the determinant basis:
! ---------------------------------------------------
! y(:,k) = rk
! U(:,k) = Bk
! U(:,shift2+k) = Rk = Bk x rk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, U(1,shift2+1), size(U, 1) )
do k = 1, N_st_diag
call normalize(U(1,shift2+k), sze)
enddo
! ---
! select the max overlap
!
! start test ------------------------------------------------------------------------
!
!double precision, allocatable :: Utest(:,:), Otest(:)
!allocate( Utest(sze,shift2), Otest(shift2) )
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
!do k = 1, shift2
! call normalize(Utest(1,k), sze)
!enddo
!do j = 1, sze
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
!enddo
!do k = 1, shift2
! Otest(k) = 0.d0
! do i = 1, sze
! Otest(k) += Utest(i,k) * u_in(i,1)
! enddo
! Otest(k) = dabs(Otest(k))
! print *, ' Otest =', k, Otest(k), lambda(k)
!enddo
!deallocate(Utest, Otest)
!
! end test ------------------------------------------------------------------------
!
! TODO
! state_following is more efficient
do l = 1, N_st
allocate( overlap(N_st_diag) )
do k = 1, N_st_diag
overlap(k) = 0.d0
do i = 1, sze
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
enddo
overlap(k) = dabs(overlap(k))
!print *, ' overlap =', k, overlap(k)
enddo
lambda_tmp = 0.d0
do k = 1, N_st_diag
if(overlap(k) .gt. lambda_tmp) then
i_omax(l) = k
lambda_tmp = overlap(k)
endif
enddo
deallocate(overlap)
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
endif
if(i_omax(l) .ne. l) then
print *, ' !!! WARNONG !!!'
print *, ' index of state', l, i_omax(l)
endif
enddo
! y(:,k) = rk
! W(:,k) = H x Bk
! W(:,shift2+k) = H x Bk x rk
! = Wk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, W(1,shift2+1), size(W, 1) )
! ---
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k = 1, N_st_diag
do i = 1, sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
enddo
if(k <= N_st) then
l = k
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
to_print(1,k) = lambda(l)
to_print(2,k) = residual_norm(l)
endif
enddo
!$OMP END PARALLEL DO
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
!to_print(1,1) = lambda(1)
!to_print(2,1) = residual_norm(1)
if( (itertot > 1) .and. (iter == 1) ) then
!don't print
continue
else
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if(iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
endif
do k = 1, N_st
if(residual_norm(k) > 1.e8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if(converged) then
exit
endif
logical, external :: qp_stop
if(qp_stop()) then
converged = .True.
exit
endif
enddo ! loop over iter
! Re-contract U and update W
! --------------------------------
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U, size(U, 1), sze, N_st_diag)
call ortho_qr(U, size(U, 1), sze, N_st_diag)
do j = 1, N_st_diag
k = 1
do while( (k < sze) .and. (U(k,j) == 0.d0) )
k = k+1
enddo
if(U(k,j) * u_in(k,j) < 0.d0) then
do i = 1, sze
W(i,j) = -W(i,j)
enddo
endif
enddo
enddo ! loop over while
! ---
do k = 1, N_st
energies(k) = lambda(k)
enddo
write_buffer = '====='
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate(U, h, y, lambda, residual_norm, i_omax)
FREE nthreads_davidson
end subroutine davidson_general_ext_rout_nonsym_b1space
! ---
subroutine dress_calc(v,dress,u,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computed the action of the diagonal dressing dress
!
! WARNING :: v is not initialiazed !!!
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st),dress(sze)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,istate
do istate = 1, N_st
do i = 1, sze
v(i,istate) += dress(i) * u(i,istate)
enddo
enddo
end

View File

@ -0,0 +1,473 @@
! ---
subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc)
use mmap_module
BEGIN_DOC
! Generic modified-Davidson diagonalization
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
implicit none
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze)
logical, intent(inout) :: converged
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
character*(16384) :: write_buffer
integer :: iter, N_st_diag
integer :: i, j, k, l, m
integer :: iter2, itertot
logical :: disk_based
integer :: shift, shift2, itermax
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: to_print(2,N_st)
double precision :: r1, r2, alpha
double precision :: cpu, wall
double precision :: cmax
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
double precision, allocatable :: U(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
double precision :: lambda_tmp
integer, allocatable :: i_omax(:)
double precision, allocatable :: U_tmp(:), overlap(:)
double precision, allocatable :: W(:,:)
!double precision, pointer :: W(:,:)
double precision, external :: u_dot_v, u_dot_u
include 'constants.include.F'
N_st_diag = N_st_diag_in
! print*,'trial vector'
do i = 1, sze
if(isnan(u_in(i,1)))then
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
print*,i,u_in(i,1)
stop
else if (dabs(u_in(i,1)).lt.1.d-16)then
u_in(i,1) = 0.d0
endif
enddo
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if(N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
provide threshold_nonsym_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_S2_u_0_nstates_zmq
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if(nproc_target == 0) then
call check_mem(r1, irp_here)
nproc_target = 1
exit
endif
if(r1+rss < qp_max_mem) then
exit
endif
if(itermax > 4) then
itermax = itermax - 1
! else if (m==1.and.disk_based_davidson) then
! m = 0
! disk_based = .True.
! itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6, N_st, 'Number of states')
call write_int(6, N_st_diag, 'Number of states in diagonalization')
call write_int(6, sze, 'Number of basis functions')
call write_int(6, nproc_target, 'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if(disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
! ---
allocate( W(sze,N_st_diag*itermax) )
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
lambda(N_st_diag*itermax), &
residual_norm(N_st_diag), &
i_omax(N_st) &
)
U = 0.d0
h = 0.d0
y = 0.d0
lambda = 0.d0
residual_norm = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
! Initialize from N_st to N_st_diag with gaussian random numbers
! to be sure to have overlap with any eigenvectors
do k = N_st+1, N_st_diag
u_in(k,k) = 10.d0
do i = 1, sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
! Normalize all states
do k = 1, N_st_diag
call normalize(u_in(1,k), sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
! ---
itertot = 0
do while (.not.converged)
itertot = itertot + 1
if(itertot == 8) then
exit
endif
do iter = 1, itermax-1
shift = N_st_diag * (iter-1)
shift2 = N_st_diag * iter
if( (iter > 1) .or. (itertot == 1) ) then
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U, size(U, 1), sze, shift2)
call ortho_qr(U, size(U, 1), sze, shift2)
! W = H U
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
else
! Already computed in update below
continue
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
, U, size(U, 1), W, size(W, 1) &
, 0.d0, h, size(h, 1) )
! Diagonalize h y = lambda y
! ---------------------------
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
! Express eigenvectors of h in the determinant basis:
! ---------------------------------------------------
! y(:,k) = rk
! U(:,k) = Bk
! U(:,shift2+k) = Rk = Bk x rk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, U(1,shift2+1), size(U, 1) )
do k = 1, N_st_diag
call normalize(U(1,shift2+k), sze)
enddo
! ---
! select the max overlap
!
! start test ------------------------------------------------------------------------
!
!double precision, allocatable :: Utest(:,:), Otest(:)
!allocate( Utest(sze,shift2), Otest(shift2) )
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
!do k = 1, shift2
! call normalize(Utest(1,k), sze)
!enddo
!do j = 1, sze
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
!enddo
!do k = 1, shift2
! Otest(k) = 0.d0
! do i = 1, sze
! Otest(k) += Utest(i,k) * u_in(i,1)
! enddo
! Otest(k) = dabs(Otest(k))
! print *, ' Otest =', k, Otest(k), lambda(k)
!enddo
!deallocate(Utest, Otest)
!
! end test ------------------------------------------------------------------------
!
! TODO
! state_following is more efficient
do l = 1, N_st
allocate( overlap(N_st_diag) )
do k = 1, N_st_diag
overlap(k) = 0.d0
do i = 1, sze
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
enddo
overlap(k) = dabs(overlap(k))
!print *, ' overlap =', k, overlap(k)
enddo
lambda_tmp = 0.d0
do k = 1, N_st_diag
if(overlap(k) .gt. lambda_tmp) then
i_omax(l) = k
lambda_tmp = overlap(k)
endif
enddo
deallocate(overlap)
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
endif
if(i_omax(l) .ne. l) then
print *, ' !!! WARNONG !!!'
print *, ' index of state', l, i_omax(l)
endif
enddo
! y(:,k) = rk
! W(:,k) = H x Bk
! W(:,shift2+k) = H x Bk x rk
! = Wk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, W(1,shift2+1), size(W, 1) )
! ---
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k = 1, N_st_diag
do i = 1, sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
enddo
if(k <= N_st) then
l = k
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
to_print(1,k) = lambda(l)
to_print(2,k) = residual_norm(l)
endif
enddo
!$OMP END PARALLEL DO
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
!to_print(1,1) = lambda(1)
!to_print(2,1) = residual_norm(1)
if( (itertot > 1) .and. (iter == 1) ) then
!don't print
continue
else
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if(iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
endif
do k = 1, N_st
if(residual_norm(k) > 1.e8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if(converged) then
exit
endif
logical, external :: qp_stop
if(qp_stop()) then
converged = .True.
exit
endif
enddo ! loop over iter
! Re-contract U and update W
! --------------------------------
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U, size(U, 1), sze, N_st_diag)
call ortho_qr(U, size(U, 1), sze, N_st_diag)
do j = 1, N_st_diag
k = 1
do while( (k < sze) .and. (U(k,j) == 0.d0) )
k = k+1
enddo
if(U(k,j) * u_in(k,j) < 0.d0) then
do i = 1, sze
W(i,j) = -W(i,j)
enddo
endif
enddo
enddo ! loop over while
! ---
do k = 1, N_st
energies(k) = lambda(k)
enddo
write_buffer = '====='
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate(U, h, y, lambda, residual_norm, i_omax)
FREE nthreads_davidson
end subroutine davidson_general_ext_rout_nonsym_b1space
! ---

View File

@ -4,6 +4,12 @@ doc: Thresholds of Davidson's algorithm if threshold_davidson_from_pt2 is false.
interface: ezfio,provider,ocaml
default: 1.e-10
[threshold_nonsym_davidson]
type: Threshold
doc: Thresholds of non-symetric Davidson's algorithm
interface: ezfio,provider,ocaml
default: 1.e-10
[threshold_davidson_from_pt2]
type: logical
doc: Thresholds of Davidson's algorithm is set to E(rPT2)*threshold_davidson_from_pt2

View File

@ -589,6 +589,67 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef)
endif
end
subroutine save_wavefunction_general_unormalized(ndet,nstates,psidet,dim_psicoef,psicoef)
implicit none
BEGIN_DOC
! Save the wave function into the |EZFIO| file
END_DOC
use bitmasks
include 'constants.include.F'
integer, intent(in) :: ndet,nstates,dim_psicoef
integer(bit_kind), intent(in) :: psidet(N_int,2,ndet)
double precision, intent(in) :: psicoef(dim_psicoef,nstates)
integer*8, allocatable :: psi_det_save(:,:,:)
double precision, allocatable :: psi_coef_save(:,:)
double precision :: accu_norm
integer :: i,j,k, ndet_qp_edit
if (mpi_master) then
ndet_qp_edit = min(ndet,N_det_qp_edit)
call ezfio_set_determinants_N_int(N_int)
call ezfio_set_determinants_bit_kind(bit_kind)
call ezfio_set_determinants_N_det(ndet)
call ezfio_set_determinants_N_det_qp_edit(ndet_qp_edit)
call ezfio_set_determinants_n_states(nstates)
call ezfio_set_determinants_mo_label(mo_label)
allocate (psi_det_save(N_int,2,ndet))
do i=1,ndet
do j=1,2
do k=1,N_int
psi_det_save(k,j,i) = transfer(psidet(k,j,i),1_8)
enddo
enddo
enddo
call ezfio_set_determinants_psi_det(psi_det_save)
call ezfio_set_determinants_psi_det_qp_edit(psi_det_save)
deallocate (psi_det_save)
allocate (psi_coef_save(ndet,nstates))
do k=1,nstates
do i=1,ndet
psi_coef_save(i,k) = psicoef(i,k)
enddo
enddo
call ezfio_set_determinants_psi_coef(psi_coef_save)
deallocate (psi_coef_save)
allocate (psi_coef_save(ndet_qp_edit,nstates))
do k=1,nstates
do i=1,ndet_qp_edit
psi_coef_save(i,k) = psicoef(i,k)
enddo
enddo
call ezfio_set_determinants_psi_coef_qp_edit(psi_coef_save)
deallocate (psi_coef_save)
call write_int(6,ndet,'Saved determinants')
endif
end
subroutine save_wavefunction_specified(ndet,nstates,psidet,psicoef,ndetsave,index_det_save)

11
src/tc_bi_ortho/EZFIO.cfg Normal file
View File

@ -0,0 +1,11 @@
[psi_l_coef_bi_ortho]
interface: ezfio
doc: Coefficients for the left wave function
type: double precision
size: (determinants.n_det,determinants.n_states)
[psi_r_coef_bi_ortho]
interface: ezfio
doc: Coefficients for the right wave function
type: double precision
size: (determinants.n_det,determinants.n_states)

6
src/tc_bi_ortho/NEED Normal file
View File

@ -0,0 +1,6 @@
bi_ort_ints
bi_ortho_mos
tc_keywords
non_hermit_dav
dav_general_mat
tc_scf

View File

@ -0,0 +1,53 @@
program compute_deltamu_right
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
PROVIDE N_int
call delta_right()
end
! ---
subroutine delta_right()
implicit none
integer :: k
double precision, allocatable :: delta(:,:)
print *, j1b_type
print *, j1b_pen
print *, mu_erf
allocate( delta(N_det,N_states) )
delta = 0.d0
do k = 1, N_states
!do k = 1, 1
! get < I_left | H_mu - H | psi_right >
!call get_h_bitc_right(psi_det, psi_r_coef_bi_ortho(:,k), N_det, N_int, delta(:,k))
call get_delta_bitc_right(psi_det, psi_r_coef_bi_ortho(:,k), N_det, N_int, delta(:,k))
! order as QMCCHEM
call dset_order(delta(:,k), psi_bilinear_matrix_order, N_det)
enddo
! call ezfio_set_dmc_dress_dmc_delta_h(delta)
deallocate(delta)
return
end subroutine delta_right
! ---

View File

@ -0,0 +1,155 @@
! ---
subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
BEGIN_DOC
!
! delta(I) = < I_left | H_TC - H | Psi_right >
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: ndet, Nint
double precision, intent(in) :: psicoef(ndet)
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
double precision, intent(out) :: delta(ndet)
integer :: i, j
double precision :: h_mono, h_twoe, h_tot
double precision :: htc_mono, htc_twoe, htc_three, htc_tot
double precision :: delta_mat
print *, ' get_delta_bitc_right ...'
i = 1
j = 1
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
call hmat_bi_ortho (psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
!$OMP PRIVATE(i, j, delta_mat, h_mono, h_twoe, h_tot, &
!$OMP htc_mono, htc_twoe, htc_three, htc_tot)
do i = 1, ndet
do j = 1, ndet
! < I | Htilde | J >
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
! < I | H | J >
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta_mat = htc_tot - h_tot
delta(i) = delta(i) + psicoef(j) * delta_mat
enddo
enddo
!$OMP END PARALLEL DO
end subroutine get_delta_bitc_right
! ---
subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
BEGIN_DOC
!
! delta(I) = < I_left | H_TC | Psi_right >
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: ndet, Nint
double precision, intent(in) :: psicoef(ndet)
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
double precision, intent(out) :: delta(ndet)
integer :: i, j
double precision :: htc_mono, htc_twoe, htc_three, htc_tot
print *, ' get_htc_bitc_right ...'
i = 1
j = 1
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
!$OMP PRIVATE(i, j, htc_mono, htc_twoe, htc_three, htc_tot)
do i = 1, ndet
do j = 1, ndet
! < I | Htilde | J >
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
delta(i) = delta(i) + psicoef(j) * htc_tot
enddo
enddo
!$OMP END PARALLEL DO
end subroutine get_htc_bitc_right
! ---
subroutine get_h_bitc_right(psidet, psicoef, ndet, Nint, delta)
BEGIN_DOC
!
! delta(I) = < I_left | H | Psi_right >
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: ndet, Nint
double precision, intent(in) :: psicoef(ndet)
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
double precision, intent(out) :: delta(ndet)
integer :: i, j
double precision :: h_mono, h_twoe, h_tot
print *, ' get_h_bitc_right ...'
i = 1
j = 1
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
!double precision :: norm
!norm = 0.d0
!do i = 1, ndet
! norm += psicoef(i) * psicoef(i)
!enddo
!print*, ' norm = ', norm
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta = 0.d0
! !$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
! !$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
! !$OMP PRIVATE(i, j, h_mono, h_twoe, h_tot)
do i = 1, ndet
do j = 1, ndet
! < I | H | J >
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
delta(i) = delta(i) + psicoef(j) * h_tot
enddo
enddo
! !$OMP END PARALLEL DO
end subroutine get_h_bitc_right
! ---

View File

@ -0,0 +1,104 @@
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_PROVIDER [ double precision, e_tilde_00]
implicit none
double precision :: hmono,htwoe,hthree,htot
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
e_tilde_00 = htot
END_PROVIDER
BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth]
&BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth_single]
&BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth_double]
implicit none
integer :: i,degree
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e
e_pt2_tc_bi_orth = 0.d0
e_pt2_tc_bi_orth_single = 0.d0
e_pt2_tc_bi_orth_double = 0.d0
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_pt2_tc_bi_orth += coef_pt1 * htilde_ij
if(degree == 1)then
e_pt2_tc_bi_orth_single += coef_pt1 * htilde_ij
else
! print*,'coef_pt1, e_pt2',coef_pt1,coef_pt1 * htilde_ij
e_pt2_tc_bi_orth_double += coef_pt1 * htilde_ij
endif
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, e_tilde_bi_orth_00]
implicit none
double precision :: hmono,htwoe,hthree,htilde_ij
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
e_tilde_bi_orth_00 += nuclear_repulsion
END_PROVIDER
BEGIN_PROVIDER [ double precision, e_corr_bi_orth ]
&BEGIN_PROVIDER [ double precision, e_corr_bi_orth_proj ]
&BEGIN_PROVIDER [ double precision, e_corr_single_bi_orth ]
&BEGIN_PROVIDER [ double precision, e_corr_double_bi_orth ]
implicit none
integer :: i,degree
double precision :: hmono,htwoe,hthree,htilde_ij
e_corr_bi_orth = 0.d0
e_corr_single_bi_orth = 0.d0
e_corr_double_bi_orth = 0.d0
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
if(degree == 1)then
e_corr_single_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
else if(degree == 2)then
e_corr_double_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
! print*,'coef_wf , e_cor',reigvec_tc_bi_orth(i,1)/reigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
endif
enddo
e_corr_bi_orth_proj = e_corr_single_bi_orth + e_corr_double_bi_orth
e_corr_bi_orth = eigval_right_tc_bi_orth(1) - e_tilde_bi_orth_00
END_PROVIDER
BEGIN_PROVIDER [ double precision, e_tc_left_right ]
implicit none
integer :: i,j
double precision :: hmono,htwoe,hthree,htilde_ij,accu
e_tc_left_right = 0.d0
accu = 0.d0
do i = 1, N_det
accu += reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(i,1)
do j = 1, N_det
call htilde_mu_mat_bi_ortho(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
e_tc_left_right += htilde_ij * reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(j,1)
enddo
enddo
e_tc_left_right *= 1.d0/accu
e_tc_left_right += nuclear_repulsion
END_PROVIDER
BEGIN_PROVIDER [ double precision, coef_pt1_bi_ortho, (N_det)]
implicit none
integer :: i,degree
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree==0)then
coef_pt1_bi_ortho(i) = 1.d0
else
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
coef_pt1_bi_ortho(i)= coef_pt1
endif
enddo
END_PROVIDER

View File

@ -0,0 +1,243 @@
! --
subroutine hmat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, htot)
BEGIN_DOC
!
! < key_j | H | key_i > where | key_j > is developed on the LEFT basis and | key_i > is developed on the RIGHT basis
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot
integer :: degree
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree .gt. 2) return
if(degree == 0) then
call diag_hmat_bi_ortho(Nint, key_i, hmono, htwoe)
htot = htot + nuclear_repulsion
else if (degree == 1) then
call single_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
else if(degree == 2) then
call double_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
endif
htot += hmono + htwoe
return
end subroutine hmat_bi_ortho
! ---
subroutine diag_hmat_bi_ortho(Nint, key_i, hmono, htwoe)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin
hmono = 0.d0
htwoe = 0.d0
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
do ispin = 1, 2
do i = 1, Ne(ispin)
ii = occ(i,ispin)
hmono += mo_bi_ortho_one_e(ii,ii)
enddo
enddo
! alpha/beta two-body
ispin = 1
jspin = 2
do i = 1, Ne(ispin) ! electron 1
ii = occ(i,ispin)
do j = 1, Ne(jspin) ! electron 2
jj = occ(j,jspin)
htwoe += mo_bi_ortho_coul_e(jj,ii,jj,ii)
enddo
enddo
! alpha/alpha two-body
do i = 1, Ne(ispin)
ii = occ(i,ispin)
do j = i+1, Ne(ispin)
jj = occ(j,ispin)
htwoe += mo_bi_ortho_coul_e(ii,jj,ii,jj) - mo_bi_ortho_coul_e(ii,jj,jj,ii)
enddo
enddo
! beta/beta two-body
do i = 1, Ne(jspin)
ii = occ(i,jspin)
do j = i+1, Ne(jspin)
jj = occ(j,jspin)
htwoe += mo_bi_ortho_coul_e(ii,jj,ii,jj) - mo_bi_ortho_coul_e(ii,jj,jj,ii)
enddo
enddo
return
end subroutine diag_hmat_bi_ortho
! ---
subroutine single_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
BEGIN_DOC
!
! < key_j | H | key_i > for single excitation
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, ispin, jspin
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
integer :: other_spin(2)
double precision :: phase
other_spin(1) = 2
other_spin(2) = 1
hmono = 0.d0
htwoe = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree .ne. 1) then
return
endif
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
hmono = mo_bi_ortho_one_e(p1,h1) * phase
! alpha/beta two-body
ispin = other_spin(s1)
if(s1 == 1) then
! single alpha
do i = 1, Ne(ispin) ! electron 2
ii = occ(i,ispin)
htwoe += mo_bi_ortho_coul_e(ii,p1,ii,h1)
enddo
else
! single beta
do i = 1, Ne(ispin) ! electron 1
ii = occ(i,ispin)
htwoe += mo_bi_ortho_coul_e(p1,ii,h1,ii)
enddo
endif
! same spin two-body
do i = 1, Ne(s1)
ii = occ(i,s1)
! ( h1 p1 |ii ii ) - ( h1 ii | p1 ii )
htwoe += mo_bi_ortho_coul_e(ii,p1,ii,h1) - mo_bi_ortho_coul_e(p1,ii,ii,h1)
enddo
htwoe *= phase
end subroutine single_hmat_bi_ortho
! ---
subroutine double_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
BEGIN_DOC
!
! < key_j | H | key_i> for double excitation
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, ispin, jspin
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
integer :: other_spin(2)
double precision :: phase
other_spin(1) = 2
other_spin(2) = 1
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe = 0.d0
if(degree .ne. 2) then
return
endif
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1 .ne. s2) then
htwoe = mo_bi_ortho_coul_e(p2,p1,h2,h1)
else
! same spin two-body
! direct terms exchange terms
htwoe = mo_bi_ortho_coul_e(p2,p1,h2,h1) - mo_bi_ortho_coul_e(p1,p2,h2,h1)
endif
htwoe *= phase
end subroutine double_hmat_bi_ortho
! ---

View File

@ -0,0 +1,92 @@
subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
use bitmasks
BEGIN_DOC
! Application of H_TC on a vector
!
! v(i,istate) = \sum_j u(j,istate) H_TC(i,j), with:
! H_TC(i,j) = < Di | H_TC | Dj >
!
END_DOC
implicit none
integer, intent(in) :: N_st, sze
double precision, intent(in) :: u(sze,N_st)
double precision, intent(inout) :: v(sze,N_st)
integer :: i, j, istate
double precision :: htot
PROVIDE N_int
PROVIDE psi_det
! TODO : transform it with the bi-linear representation in terms of alpha-beta.
i = 1
j = 1
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, sze, N_int, psi_det, u, v) &
!$OMP PRIVATE(istate, i, j, htot)
do istate = 1, N_st
do i = 1, sze
do j = 1, sze
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v(i,istate) = v(i,istate) + htot * u(j,istate)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
use bitmasks
BEGIN_DOC
! Application of (H_TC)^dagger on a vector
!
! v(i,istate) = \sum_j u(j,istate) H_TC(j,i), with:
! H_TC(i,j) = < Di | H_TC | Dj >
!
END_DOC
implicit none
integer, intent(in) :: N_st, sze
double precision, intent(in) :: u(sze,N_st)
double precision, intent(inout) :: v(sze,N_st)
integer :: i, j, istate
double precision :: htot
PROVIDE N_int
PROVIDE psi_det
i = 1
j = 1
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
v = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, sze, N_int, psi_det, u, v) &
!$OMP PRIVATE(istate, i, j, htot)
do istate = 1, N_st
do i = 1, sze
do j = 1, sze
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
v(i,istate) = v(i,istate) + htot * u(j,istate)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end

View File

@ -0,0 +1,319 @@
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordering of the three body interaction on the HF density
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree_aba,hthree_aaa,hthree_aab
double precision :: wall0,wall1
PROVIDE N_int
allocate( occ(N_int*bit_kind_size,2) )
allocate( key_i_core(N_int,2) )
if(core_tc_op) then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth = 0.d0
print*,'Providing normal_two_body_bi_orth ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
! opposite spin double excitations
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
! same spin double excitations with opposite spin contributions
if(h1<h2.and.p1.gt.p2)then
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
! same spin double excitations with same spin contributions
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,'Wall time for normal_two_body_bi_orth ',wall1-wall0
deallocate( occ )
deallocate( key_i_core )
END_PROVIDER
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, integral
!!!! double alpha/beta
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
int_exc_12 = -1.d0 * integral
hthree += 2.d0 * int_direct - 1.d0 * ( int_exc_13 + int_exc_12)
enddo
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13 = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
int_exc_12 = -1.d0 * integral
hthree += 1.d0 * int_direct - 0.5d0* ( int_exc_13 + int_exc_12)
enddo
end subroutine give_aba_contraction
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: h1, p1, h2, p2, i
integer :: hh1, hh2, pp1, pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op)then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
else
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
endif
normal_two_body_bi_orth_ab = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1, n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1, n_act_orb
p2 = list_act(pp2)
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
BEGIN_DOC
! Normal ordered two-body sector of the three-body terms for same spin double excitations
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i,ii,j,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2
integer :: Ne(2)
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
double precision :: hthree_aab, hthree_aaa
PROVIDE N_int
allocate( key_i_core(N_int,2) )
allocate( occ(N_int*bit_kind_size,2) )
if(core_tc_op)then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
else
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
endif
normal_two_body_bi_orth_aa_bb = 0.d0
do hh1 = 1, n_act_orb
h1 = list_act(hh1)
do pp1 = 1 , n_act_orb
p1 = list_act(pp1)
do hh2 = 1, n_act_orb
h2 = list_act(hh2)
do pp2 = 1 , n_act_orb
p2 = list_act(pp2)
if(h1<h2.and.p1.gt.p2)then
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
else
hthree_aaa = 0.d0
endif
else
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
if(Ne(2).ge.3)then
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
else
hthree_aaa = 0.d0
endif
endif
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
enddo
enddo
enddo
enddo
deallocate( key_i_core )
deallocate( occ )
END_PROVIDER
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii,i
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
double precision :: integral,int_exc_l,int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
int_exc_ll= -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
int_exc_12= -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13= -1.d0 * integral
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 )
enddo
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
i = occ(ii,1)
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
int_exc_l = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
int_exc_ll= -1.d0 * integral
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
int_exc_12= -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
int_exc_13= -1.d0 * integral
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 ))
enddo
end subroutine give_aaa_contraction
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer, intent(in) :: Nint, h1, h2, p1, p2
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
double precision, intent(out) :: hthree
integer :: ii, i
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
double precision :: integral, int_exc_l, int_exc_ll
hthree = 0.d0
do ii = 1, Ne(2) ! purely closed shell part
i = occ(ii,2)
call give_integrals_3_body_bi_ort(p2,p1,i,h2,h1,i,integral)
int_direct = -1.d0 * integral
call give_integrals_3_body_bi_ort(p1,p2,i,h2,h1,i,integral)
int_exc_23= -1.d0 * integral
hthree += 1.d0 * int_direct - int_exc_23
enddo
end subroutine give_aab_contraction

View File

@ -0,0 +1,142 @@
! ---
program print_he_tc_energy
implicit none
call print_overlap()
call print_energy1()
end
! ---
subroutine print_overlap()
implicit none
integer :: i, j, k, l
double precision :: S_ij
print *, ' ao_overlap:'
do i = 1, ao_num
do j = 1, ao_num
print *, j, i, ao_overlap(j,i)
enddo
enddo
print *, ' mo_overlap:'
do i = 1, mo_num
do j = 1, mo_num
S_ij = 0.d0
do k = 1, ao_num
do l = 1, ao_num
S_ij += mo_l_coef(k,i) * ao_overlap(k,l) * mo_r_coef(l,j)
enddo
enddo
print *, i, j, S_ij
enddo
enddo
end subroutine print_overlap
! ---
subroutine print_energy1()
implicit none
integer :: i, j, k, l
double precision :: e, n, e_tmp, n_tmp, e_ns
double precision, external :: ao_two_e_integral
e = 0.d0
n = 0.d0
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! < phi_1 phi_1 | h1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_1 | h2 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
e_ns = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
! ao_two_e_tc_tot(i,j,k,l) = <k i| V^TC(r_12) |l j>
e += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_two_e_tc_tot(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
e_ns += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_non_hermit_term_chemist(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
enddo
enddo
enddo
enddo
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
! < phi_1 phi_1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
enddo
enddo
n += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
e = e / n
e_ns = e_ns / n
print *, ' tc energy = ', e
print *, ' non-sym energy = ', e_ns
end subroutine print_energy1
! ---

View File

@ -0,0 +1,104 @@
program print_tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! if(three_body_h_tc)then
! call provide_all_three_ints_bi_ortho
! endif
! call routine
call write_l_r_wf
end
subroutine write_l_r_wf
implicit none
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.tc_wf'
i_unit_output = getUnitAndOpen(output,'w')
integer :: i
print*,'Writing the left-right wf'
do i = 1, N_det
write(i_unit_output,*)i,psi_l_coef_sorted_bi_ortho_left(i),psi_r_coef_sorted_bi_ortho_right(i)
enddo
end
subroutine routine
implicit none
integer :: i,degree
integer :: exc(0:2,2,2),h1,p1,s1,h2,p2,s2
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e,e_pt2
double precision :: contrib_pt,e_corr,coef,contrib,phase
double precision :: accu_positive,accu_positive_pt, accu_positive_core,accu_positive_core_pt
e_pt2 = 0.d0
accu_positive = 0.D0
accu_positive_pt = 0.D0
accu_positive_core = 0.d0
accu_positive_core_pt = 0.d0
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
delta_e = e_tilde_00 - e_i0
coef_pt1 = htilde_ij / delta_e
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
contrib_pt = coef_pt1 * htilde_ij
e_pt2 += contrib_pt
coef = psi_r_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1)
contrib = coef * htilde_ij
e_corr += contrib
call get_excitation(HF_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
print*,'*********'
if(degree==1)then
print*,'s1',s1
print*,'h1,p1 = ',h1,p1
else if(degree ==2)then
print*,'s1',s1
print*,'h1,p1 = ',h1,p1
print*,'s2',s2
print*,'h2,p2 = ',h2,p2
endif
print*,'coef_pt1 = ',coef_pt1
print*,'coef = ',coef
print*,'contrib_pt ',contrib_pt
print*,'contrib = ',contrib
if(contrib.gt.0.d0)then
accu_positive += contrib
if(h1==1.or.h2==1)then
accu_positive_core += contrib
endif
if(dabs(contrib).gt.1.d-5)then
print*,'Found a positive contribution to correlation energy !!'
endif
endif
if(contrib_pt.gt.0.d0)then
accu_positive_pt += contrib_pt
if(h2==1.or.h1==1)then
accu_positive_core_pt += contrib_pt
endif
endif
endif
enddo
print*,''
print*,''
print*,'Total correlation energy = ',e_corr
print*,'Total correlation energy PT = ',e_pt2
print*,'Positive contribution to ecorr = ',accu_positive
print*,'Positive contribution to ecorr PT = ',accu_positive_pt
print*,'Pure core contribution = ',accu_positive_core
print*,'Pure core contribution PT = ',accu_positive_core_pt
end

View File

@ -0,0 +1,157 @@
use bitmasks
BEGIN_PROVIDER [ double precision, psi_average_norm_contrib_tc, (psi_det_size) ]
implicit none
BEGIN_DOC
! Contribution of determinants to the state-averaged density.
END_DOC
integer :: i,j,k
double precision :: f
psi_average_norm_contrib_tc(:) = 0.d0
do k=1,N_states
do i=1,N_det
psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i) + &
dabs(psi_l_coef_bi_ortho(i,k)*psi_r_coef_bi_ortho(i,k))*state_average_weight(k)
enddo
enddo
f = 1.d0/sum(psi_average_norm_contrib_tc(1:N_det))
do i=1,N_det
psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i)*f
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ double precision, psi_coef_sorted_tc, (psi_det_size,N_states) ]
&BEGIN_PROVIDER [ double precision, psi_average_norm_contrib_sorted_tc, (psi_det_size) ]
&BEGIN_PROVIDER [ integer, psi_det_sorted_tc_order, (psi_det_size) ]
implicit none
BEGIN_DOC
! Wave function sorted by determinants contribution to the norm (state-averaged)
!
! psi_det_sorted_tc_order(i) -> k : index in psi_det
END_DOC
integer :: i,j,k
integer, allocatable :: iorder(:)
allocate ( iorder(N_det) )
do i=1,N_det
psi_average_norm_contrib_sorted_tc(i) = -psi_average_norm_contrib_tc(i)
iorder(i) = i
enddo
call dsort(psi_average_norm_contrib_sorted_tc,iorder,N_det)
do i=1,N_det
do j=1,N_int
psi_det_sorted_tc(j,1,i) = psi_det(j,1,iorder(i))
psi_det_sorted_tc(j,2,i) = psi_det(j,2,iorder(i))
enddo
psi_average_norm_contrib_sorted_tc(i) = -psi_average_norm_contrib_sorted_tc(i)
psi_det_sorted_tc_order(iorder(i)) = i
enddo
double precision :: accu
do k=1,N_states
accu = 0.d0
do i=1,N_det
psi_coef_sorted_tc(i,k) = dsqrt(dabs(psi_l_coef_bi_ortho(iorder(i),k)*psi_r_coef_bi_ortho(iorder(i),k)))
accu += psi_coef_sorted_tc(i,k)**2
enddo
accu = 1.d0/dsqrt(accu)
do i=1,N_det
psi_coef_sorted_tc(i,k) *= accu
enddo
enddo
psi_det_sorted_tc(:,:,N_det+1:psi_det_size) = 0_bit_kind
psi_coef_sorted_tc(N_det+1:psi_det_size,:) = 0.d0
psi_average_norm_contrib_sorted_tc(N_det+1:psi_det_size) = 0.d0
psi_det_sorted_tc_order(N_det+1:psi_det_size) = 0
deallocate(iorder)
END_PROVIDER
BEGIN_PROVIDER [double precision, psi_r_coef_sorted_bi_ortho, (psi_det_size, N_states)]
&BEGIN_PROVIDER [double precision, psi_l_coef_sorted_bi_ortho, (psi_det_size, N_states)]
BEGIN_DOC
! psi_r_coef_sorted_bi_ortho : right coefficients corresponding to psi_det_sorted_tc
! psi_l_coef_sorted_bi_ortho : left coefficients corresponding to psi_det_sorted_tc
END_DOC
implicit none
integer :: i, j, k
psi_r_coef_sorted_bi_ortho = 0.d0
psi_l_coef_sorted_bi_ortho = 0.d0
do i = 1, N_det
psi_r_coef_sorted_bi_ortho(i,1) = psi_r_coef_bi_ortho(psi_det_sorted_tc_order(i),1)
psi_l_coef_sorted_bi_ortho(i,1) = psi_l_coef_bi_ortho(psi_det_sorted_tc_order(i),1)
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_bit, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ double precision, psi_coef_sorted_tc_bit, (psi_det_size,N_states) ]
implicit none
BEGIN_DOC
! Determinants on which we apply $\langle i|H|psi \rangle$ for perturbation.
! They are sorted by determinants interpreted as integers. Useful
! to accelerate the search of a random determinant in the wave
! function.
END_DOC
call sort_dets_by_det_search_key(N_det, psi_det, psi_coef, size(psi_coef,1), &
psi_det_sorted_tc_bit, psi_coef_sorted_tc_bit, N_states)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_right, (N_int,2,N_det) ]
&BEGIN_PROVIDER [double precision, psi_r_coef_sorted_bi_ortho_right, (N_det)]
implicit none
BEGIN_DOC
! psi_det_sorted_tc_right : Slater determinants sorted by decreasing value of |right- coefficients|
!
! psi_r_coef_sorted_bi_ortho_right : right wave function according to psi_det_sorted_tc_right
END_DOC
integer, allocatable :: iorder(:)
double precision, allocatable :: coef(:)
integer :: i,j
allocate ( iorder(N_det) , coef(N_det))
do i=1,N_det
coef(i) = -dabs(psi_r_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1))
iorder(i) = i
enddo
call dsort(coef,iorder,N_det)
do i=1,N_det
do j=1,N_int
psi_det_sorted_tc_right(j,1,i) = psi_det(j,1,iorder(i))
psi_det_sorted_tc_right(j,2,i) = psi_det(j,2,iorder(i))
enddo
psi_r_coef_sorted_bi_ortho_right(i) = psi_r_coef_bi_ortho(iorder(i),1)/psi_r_coef_bi_ortho(iorder(1),1)
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_left, (N_int,2,N_det) ]
&BEGIN_PROVIDER [double precision, psi_l_coef_sorted_bi_ortho_left, (N_det)]
implicit none
BEGIN_DOC
! psi_det_sorted_tc_left : Slater determinants sorted by decreasing value of |LEFTt- coefficients|
!
! psi_r_coef_sorted_bi_ortho_left : LEFT wave function according to psi_det_sorted_tc_left
END_DOC
integer, allocatable :: iorder(:)
double precision, allocatable :: coef(:)
integer :: i,j
allocate ( iorder(N_det) , coef(N_det))
do i=1,N_det
coef(i) = -dabs(psi_l_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1))
iorder(i) = i
enddo
call dsort(coef,iorder,N_det)
do i=1,N_det
do j=1,N_int
psi_det_sorted_tc_left(j,1,i) = psi_det(j,1,iorder(i))
psi_det_sorted_tc_left(j,2,i) = psi_det(j,2,iorder(i))
enddo
psi_l_coef_sorted_bi_ortho_left(i) = psi_l_coef_bi_ortho(iorder(i),1)/psi_l_coef_bi_ortho(iorder(1),1)
enddo
END_PROVIDER

View File

@ -0,0 +1,44 @@
! ---
BEGIN_PROVIDER [ double precision, psi_bitcleft_bilinear_matrix_values, (N_det,N_states) ]
BEGIN_DOC
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
! $D_\alpha^\dagger.C.D_\beta$
!
! Rows are $\alpha$ determinants and columns are $\beta$.
!
! Order refers to psi_det
END_DOC
use bitmasks
implicit none
integer :: k, l
if(N_det .eq. 1) then
do l = 1, N_states
psi_bitcleft_bilinear_matrix_values(1,l) = 1.d0
enddo
else
do l = 1, N_states
do k = 1, N_det
psi_bitcleft_bilinear_matrix_values(k,l) = psi_l_coef_bi_ortho(k,l)
enddo
enddo
PROVIDE psi_bilinear_matrix_order
do l = 1, N_states
call dset_order(psi_bitcleft_bilinear_matrix_values(1,l), psi_bilinear_matrix_order, N_det)
enddo
endif
END_PROVIDER
! ---

View File

@ -0,0 +1,234 @@
use bitmasks
BEGIN_PROVIDER [ double precision, psi_l_coef_bi_ortho, (psi_det_size,N_states) ]
implicit none
BEGIN_DOC
! The wave function coefficients. Initialized with Hartree-Fock if the |EZFIO| file
! is empty.
END_DOC
integer :: i,k, N_int2
logical :: exists
character*(64) :: label
PROVIDE read_wf N_det mo_label ezfio_filename nproc
psi_l_coef_bi_ortho = 0.d0
do i=1,min(N_states,N_det)
psi_l_coef_bi_ortho(i,i) = 1.d0
enddo
if (mpi_master) then
if (read_wf) then
call ezfio_has_tc_bi_ortho_psi_l_coef_bi_ortho(exists)
! if (exists) then
! call ezfio_has_tc_bi_ortho_mo_label(exists)
! if (exists) then
! call ezfio_get_tc_bi_ortho_mo_label(label)
! exists = (label == mo_label)
! endif
! endif
if (exists) then
double precision, allocatable :: psi_l_coef_bi_ortho_read(:,:)
allocate (psi_l_coef_bi_ortho_read(N_det,N_states))
print *, 'Read psi_l_coef_bi_ortho', N_det, N_states
call ezfio_get_tc_bi_ortho_psi_l_coef_bi_ortho(psi_l_coef_bi_ortho_read)
do k=1,N_states
do i=1,N_det
psi_l_coef_bi_ortho(i,k) = psi_l_coef_bi_ortho_read(i,k)
enddo
enddo
deallocate(psi_l_coef_bi_ortho_read)
else
print*, 'psi_l_coef_bi_ortho are psi_coef'
do k=1,N_states
do i=1,N_det
psi_l_coef_bi_ortho(i,k) = psi_coef(i,k)
enddo
enddo
endif
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( psi_l_coef_bi_ortho, size(psi_l_coef_bi_ortho), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read psi_l_coef_bi_ortho with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_r_coef_bi_ortho, (psi_det_size,N_states) ]
implicit none
BEGIN_DOC
! The wave function coefficients. Initialized with Hartree-Fock if the |EZFIO| file
! is empty.
END_DOC
integer :: i,k, N_int2
logical :: exists
character*(64) :: label
PROVIDE read_wf N_det mo_label ezfio_filename nproc
psi_r_coef_bi_ortho = 0.d0
do i=1,min(N_states,N_det)
psi_r_coef_bi_ortho(i,i) = 1.d0
enddo
if (mpi_master) then
if (read_wf) then
call ezfio_has_tc_bi_ortho_psi_r_coef_bi_ortho(exists)
! if (exists) then
! call ezfio_has_tc_bi_ortho_mo_label(exists)
! if (exists) then
! call ezfio_get_tc_bi_ortho_mo_label(label)
! exists = (label == mo_label)
! endif
! endif
if (exists) then
double precision, allocatable :: psi_r_coef_bi_ortho_read(:,:)
allocate (psi_r_coef_bi_ortho_read(N_det,N_states))
print *, 'Read psi_r_coef_bi_ortho', N_det, N_states
call ezfio_get_tc_bi_ortho_psi_r_coef_bi_ortho(psi_r_coef_bi_ortho_read)
do k=1,N_states
do i=1,N_det
psi_r_coef_bi_ortho(i,k) = psi_r_coef_bi_ortho_read(i,k)
enddo
enddo
deallocate(psi_r_coef_bi_ortho_read)
else
print*, 'psi_r_coef_bi_ortho are psi_coef'
do k=1,N_states
do i=1,N_det
psi_r_coef_bi_ortho(i,k) = psi_coef(i,k)
enddo
enddo
endif
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( psi_r_coef_bi_ortho, size(psi_r_coef_bi_ortho), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read psi_r_coef_bi_ortho with MPI'
endif
IRP_ENDIF
END_PROVIDER
subroutine save_tc_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psilcoef,psircoef)
implicit none
BEGIN_DOC
! Save the wave function into the |EZFIO| file
END_DOC
use bitmasks
include 'constants.include.F'
integer, intent(in) :: ndet,nstates,dim_psicoef
integer(bit_kind), intent(in) :: psidet(N_int,2,ndet)
double precision, intent(in) :: psilcoef(dim_psicoef,nstates)
double precision, intent(in) :: psircoef(dim_psicoef,nstates)
integer*8, allocatable :: psi_det_save(:,:,:)
double precision, allocatable :: psil_coef_save(:,:)
double precision, allocatable :: psir_coef_save(:,:)
double precision :: accu_norm
integer :: i,j,k, ndet_qp_edit
if (mpi_master) then
ndet_qp_edit = min(ndet,N_det_qp_edit)
call ezfio_set_determinants_N_int(N_int)
call ezfio_set_determinants_bit_kind(bit_kind)
call ezfio_set_determinants_N_det(ndet)
call ezfio_set_determinants_N_det_qp_edit(ndet_qp_edit)
call ezfio_set_determinants_n_states(nstates)
call ezfio_set_determinants_mo_label(mo_label)
allocate (psi_det_save(N_int,2,ndet))
do i=1,ndet
do j=1,2
do k=1,N_int
psi_det_save(k,j,i) = transfer(psidet(k,j,i),1_8)
enddo
enddo
enddo
call ezfio_set_determinants_psi_det(psi_det_save)
call ezfio_set_determinants_psi_det_qp_edit(psi_det_save)
deallocate (psi_det_save)
allocate (psil_coef_save(ndet,nstates),psir_coef_save(ndet,nstates))
do k=1,nstates
do i=1,ndet
psil_coef_save(i,k) = psilcoef(i,k)
psir_coef_save(i,k) = psircoef(i,k)
enddo
enddo
call ezfio_set_tc_bi_ortho_psi_l_coef_bi_ortho(psil_coef_save)
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(psir_coef_save)
deallocate (psil_coef_save,psir_coef_save)
! allocate (psi_coef_save(ndet_qp_edit,nstates))
! do k=1,nstates
! do i=1,ndet_qp_edit
! psi_coef_save(i,k) = psicoef(i,k)
! enddo
! enddo
!
! call ezfio_set_determinants_psi_coef_qp_edit(psi_coef_save)
! deallocate (psi_coef_save)
call write_int(6,ndet,'Saved determinantsi and psi_r/psi_l coef')
endif
end
subroutine save_tc_bi_ortho_wavefunction
implicit none
call save_tc_wavefunction_general(N_det,N_states,psi_det,size(psi_l_coef_bi_ortho, 1),psi_l_coef_bi_ortho,psi_r_coef_bi_ortho)
call routine_save_right_bi_ortho
end
subroutine routine_save_right_bi_ortho
implicit none
double precision, allocatable :: coef_tmp(:,:)
integer :: i
allocate(coef_tmp(N_det, N_states))
do i = 1, N_det
coef_tmp(i,1:N_states) = psi_r_coef_bi_ortho(i,1:N_states)
enddo
call save_wavefunction_general_unormalized(N_det,N_states,psi_det,size(coef_tmp,1),coef_tmp(1,1))
end
subroutine routine_save_left_right_bi_ortho
implicit none
double precision, allocatable :: coef_tmp(:,:)
integer :: i,n_states_tmp
n_states_tmp = 2
allocate(coef_tmp(N_det, n_states_tmp))
do i = 1, N_det
coef_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
coef_tmp(i,2) = psi_l_coef_bi_ortho(i,1)
enddo
call save_wavefunction_general_unormalized(N_det,n_states_tmp,psi_det,size(coef_tmp,1),coef_tmp(1,1))
end

View File

@ -0,0 +1,76 @@
program save_bitcpsileft_for_qmcchem
integer :: iunit
logical :: exists
double precision :: e_ref
print *, ' '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print *, ' call save_for_qmcchem before '
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print *, ' '
call write_lr_spindeterminants()
e_ref = 0.d0
iunit = 13
open(unit=iunit, file=trim(ezfio_filename)//'/simulation/e_ref', action='write')
call ezfio_has_fci_energy_pt2(exists)
if(.not.exists) then
call ezfio_has_fci_energy(exists)
if(.not.exists) then
call ezfio_has_cisd_energy(exists)
if(.not.exists) then
call ezfio_has_tc_scf_bitc_energy(exists)
if(exists) then
call ezfio_get_tc_scf_bitc_energy(e_ref)
endif
else
call ezfio_get_cisd_energy(e_ref)
endif
else
call ezfio_get_fci_energy(e_ref)
endif
else
call ezfio_get_fci_energy_pt2(e_ref)
endif
write(iunit,*) e_ref
close(iunit)
end
! --
subroutine write_lr_spindeterminants()
use bitmasks
implicit none
integer :: k, l
double precision, allocatable :: buffer(:,:)
PROVIDE psi_bitcleft_bilinear_matrix_values
allocate(buffer(N_det,N_states))
do l = 1, N_states
do k = 1, N_det
buffer(k,l) = psi_bitcleft_bilinear_matrix_values(k,l)
enddo
enddo
call ezfio_set_spindeterminants_psi_left_coef_matrix_values(buffer)
deallocate(buffer)
end subroutine write_lr_spindeterminants
! ---

View File

@ -0,0 +1,15 @@
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine_save_left_right_bi_ortho
! call test
end

View File

@ -0,0 +1,35 @@
program tc_natorb_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call print_energy_and_mos
call save_tc_natorb
! call minimize_tc_orb_angles
end
subroutine save_tc_natorb
implicit none
print*,'Saving the natorbs '
provide natorb_tc_leigvec_ao natorb_tc_reigvec_ao
call ezfio_set_bi_ortho_mos_mo_l_coef(natorb_tc_leigvec_ao)
call ezfio_set_bi_ortho_mos_mo_r_coef(natorb_tc_reigvec_ao)
call save_ref_determinant_nstates_1
call ezfio_set_determinants_read_wf(.False.)
end
subroutine save_ref_determinant_nstates_1
implicit none
use bitmasks
double precision :: buffer(1,N_states)
buffer = 0.d0
buffer(1,1) = 1.d0
call save_wavefunction_general(1,1,ref_bitmask,1,buffer)
end

View File

@ -0,0 +1,61 @@
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!!!!!!!!!!!!!!! WARNING NO 3-BODY
!!!!!!!!!!!!!!! WARNING NO 3-BODY
three_body_h_tc = .False.
touch three_body_h_tc
!!!!!!!!!!!!!!! WARNING NO 3-BODY
!!!!!!!!!!!!!!! WARNING NO 3-BODY
call routine_test
! call test
end
subroutine routine_test
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer :: i,n_good,degree
integer(bit_kind), allocatable :: dets(:,:,:)
integer, allocatable :: iorder(:)
double precision, allocatable :: coef(:),coef_new(:,:)
double precision :: thr
allocate(coef(N_det), iorder(N_det))
do i = 1, N_det
iorder(i) = i
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree==1)then
coef(i) = -0.5d0
else
coef(i) = -dabs(coef_pt1_bi_ortho(i))
endif
enddo
call dsort(coef,iorder,N_det)
!thr = save_threshold
thr = 1d-15
n_good = 0
do i = 1, N_det
if(dabs(coef(i)).gt.thr)then
n_good += 1
endif
enddo
print*,'n_good = ',n_good
allocate(dets(N_int,2,n_good),coef_new(n_good,n_states))
do i = 1, n_good
dets(:,:,i) = psi_det(:,:,iorder(i))
coef_new(i,:) = psi_coef(iorder(i),:)
enddo
call save_wavefunction_general(n_good,n_states,dets,n_good,coef_new)
end

View File

@ -0,0 +1,376 @@
! ---
subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe, hthree
integer :: degree
call get_excitation_degree(key_j, key_i, degree, Nint)
if(degree.gt.2)then
htot = 0.d0
else
call htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
endif
end subroutine htilde_mu_mat_bi_ortho_tot
! --
subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
BEGIN_DOC
!
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
! Returns the detail of the matrix element in terms of single, two and three electron contribution.
!! WARNING !!
!
! Non hermitian !!
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: degree
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
hthree = 0.D0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0)then
call diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
else if (degree == 1)then
call single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
else if(degree == 2)then
call double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
endif
if(three_body_h_tc) then
if(degree == 2) then
if(.not.double_normal_ord) then
call double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
endif
else if(degree == 1) then
call single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
else if(degree == 0) then
call diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
endif
endif
htot = hmono + htwoe + hthree
if(degree==0) then
htot += nuclear_repulsion
endif
end
! ---
subroutine diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
BEGIN_DOC
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2)
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
!
! PROVIDE mo_integrals_erf_map core_energy nuclear_repulsion core_bitmask
! PROVIDE core_fock_operator
!
! PROVIDE j1b_gauss
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! do i = 1, Nint
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
! enddo
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
! hmono = core_energy - nuclear_repulsion
! else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
hmono = 0.d0
! endif
htwoe= 0.d0
htot = 0.d0
do ispin = 1, 2
do i = 1, Ne(ispin) !
ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii)
! if(j1b_gauss .eq. 1) then
! print*,'j1b not implemented for bi ortho TC'
! print*,'stopping ....'
! stop
! !hmono += mo_j1b_gauss_hermI (ii,ii) &
! ! + mo_j1b_gauss_hermII (ii,ii) &
! ! + mo_j1b_gauss_nonherm(ii,ii)
! endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! hmono += core_fock_operator(ii,ii) ! add the usual Coulomb - Exchange from the core
! endif
enddo
enddo
! alpha/beta two-body
ispin = 1
jspin = 2
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
ii = occ(i,ispin)
do j = 1, Ne(jspin) ! electron 2
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
enddo
enddo
! alpha/alpha two-body
do i = 1, Ne(ispin)
ii = occ(i,ispin)
do j = i+1, Ne(ispin)
jj = occ(j,ispin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
! beta/beta two-body
do i = 1, Ne(jspin)
ii = occ(i,jspin)
do j = i+1, Ne(jspin)
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
htot = hmono + htwoe
end
subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
integer :: other_spin(2)
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: get_mo_two_e_integral_tc_int,phase
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
other_spin(1) = 2
other_spin(2) = 1
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe= 0.d0
htot = 0.d0
if(degree.ne.2)then
return
endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! do i = 1, Nint
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
! enddo
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
! else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
! endif
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
! key_j, key_i
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
if(double_normal_ord.and.+Ne(1).gt.2)then
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
endif
else
! same spin two-body
! direct terms
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
if(double_normal_ord.and.+Ne(1).gt.2)then
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
endif
endif
htwoe *= phase
htot = htwoe
end
subroutine single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int, phase
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
!
! PROVIDE core_bitmask core_fock_operator mo_integrals_erf_map
! PROVIDE j1b_gauss
other_spin(1) = 2
other_spin(2) = 1
hmono = 0.d0
htwoe= 0.d0
htot = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.ne.1)then
return
endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! do i = 1, Nint
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
! key_j_core(i,1) = xor(key_j(i,1),core_bitmask(i,1))
! key_j_core(i,2) = xor(key_j(i,2),core_bitmask(i,2))
! enddo
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
! else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
! endif
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
! if(h1==14.and.p1==2)then
! print*,'h1,p1 old = ',h1,p1
! endif
hmono = mo_bi_ortho_tc_one_e(p1,h1) * phase
! if(j1b_gauss .eq. 1) then
! print*,'j1b not implemented for bi ortho TC'
! print*,'stopping ....'
! stop
! !hmono += ( mo_j1b_gauss_hermI (h1,p1) &
! ! + mo_j1b_gauss_hermII (h1,p1) &
! ! + mo_j1b_gauss_nonherm(h1,p1) ) * phase
! endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'
! stop
! hmono += phase * core_fock_operator(h1,p1)
! endif
! alpha/beta two-body
ispin = other_spin(s1)
if(s1==1)then
! single alpha
do i = 1, Ne(ispin) ! electron 2
ii = occ(i,ispin)
htwoe += mo_bi_ortho_tc_two_e(ii,p1,ii,h1)
enddo
else
! single beta
do i = 1, Ne(ispin) ! electron 1
ii = occ(i,ispin)
htwoe += mo_bi_ortho_tc_two_e(p1,ii,h1,ii)
enddo
endif
! ! same spin two-body
do i = 1, Ne(s1)
ii = occ(i,s1)
! (h1p1|ii ii) - (h1 ii| p1 ii)
htwoe += mo_bi_ortho_tc_two_e(ii,p1,ii,h1) - mo_bi_ortho_tc_two_e(p1,ii,ii,h1)
enddo
htwoe *= phase
htot = hmono + htwoe
end

View File

@ -0,0 +1,288 @@
subroutine provide_all_three_ints_bi_ortho
implicit none
BEGIN_DOC
! routine that provides all necessary three-electron integrals
END_DOC
if(three_body_h_tc)then
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
endif
if(.not.double_normal_ord)then
PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort
PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort
else
PROVIDE normal_two_body_bi_orth
endif
end
subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int
double precision :: sym_3_e_int_from_6_idx_tensor
double precision :: three_e_diag_parrallel_spin
if(core_tc_op)then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,Nint)
else
call bitstring_to_list_ab(key_i,occ,Ne,Nint)
endif
hthree = 0.d0
if(Ne(1)+Ne(2).ge.3)then
!! ! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
! direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) USES THE 6-IDX TENSOR
! exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) USES THE 6-IDX TENSOR
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
enddo
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
enddo
enddo
enddo
endif
end
subroutine single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,k,kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: direct_int,phase,exchange_int,three_e_single_parrallel_spin
double precision :: sym_3_e_int_from_6_idx_tensor
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2),key_i_core(Nint,2)
other_spin(1) = 2
other_spin(2) = 1
hthree = 0.d0
call get_excitation_degree(key_i,key_j,degree,Nint)
if(degree.ne.1)then
return
endif
if(core_tc_op)then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
key_j_core(i,1) = xor(key_j(i,1),core_bitmask(i,1))
key_j_core(i,2) = xor(key_j(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
! alpha/alpha/beta three-body
! print*,'IN SLAT RULES'
if(Ne(1)+Ne(2).ge.3)then
! hole of spin s1 :: contribution from purely other spin
ispin = other_spin(s1) ! ispin is the other spin than s1
do i = 1, Ne(ispin) ! i is the orbitals of the other spin than s1
ii = occ(i,ispin)
do j = i+1, Ne(ispin) ! j has the same spin than s1
jj = occ(j,ispin)
! is == ispin in ::: s1 is is s1 is is s1 is is s1 is is
! < h1 j i | p1 j i > - < h1 j i | p1 i j >
!
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
exchange_int = three_e_4_idx_exch23_bi_ort(jj,ii,p1,h1)
hthree += direct_int - exchange_int
enddo
enddo
! hole of spin s1 :: contribution from mixed other spin / same spin
do i = 1, Ne(ispin) ! other spin
ii = occ(i,ispin) ! other spin
do j = 1, Ne(s1) ! same spin
jj = occ(j,s1) ! same spin
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
exchange_int = three_e_4_idx_exch13_bi_ort(jj,ii,p1,h1)
! < h1 j i | p1 j i > - < h1 j i | j p1 i >
hthree += direct_int - exchange_int
enddo
enddo
!
! hole of spin s1 :: PURE SAME SPIN CONTRIBUTIONS !!!
do i = 1, Ne(s1)
ii = occ(i,s1)
do j = i+1, Ne(s1)
jj = occ(j,s1)
! ref = sym_3_e_int_from_6_idx_tensor(jj,ii,p1,jj,ii,h1)
hthree += three_e_single_parrallel_spin(jj,ii,p1,h1) ! USES THE 4-IDX TENSOR
enddo
enddo
endif
hthree *= phase
end
! ---
subroutine double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: phase
integer :: other_spin(2)
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int,exchange_int,sym_3_e_int_from_6_idx_tensor
double precision :: three_e_double_parrallel_spin
other_spin(1) = 2
other_spin(2) = 1
call get_excitation_degree(key_i, key_j, degree, Nint)
hthree = 0.d0
if(degree.ne.2)then
return
endif
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(Ne(1)+Ne(2).ge.3)then
if(s1==s2)then ! same spin excitation
ispin = other_spin(s1)
do m = 1, Ne(ispin) ! direct(other_spin) - exchange(s1)
mm = occ(m,ispin)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
hthree += direct_int - exchange_int
enddo
do m = 1, Ne(s1) ! pure contribution from s1
mm = occ(m,s1)
hthree += three_e_double_parrallel_spin(mm,p2,h2,p1,h1)
enddo
else ! different spin excitation
do m = 1, Ne(s1)
mm = occ(m,s1) !
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
hthree += direct_int - exchange_int
enddo
do m = 1, Ne(s2)
mm = occ(m,s2) !
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
hthree += direct_int - exchange_int
enddo
endif
endif
hthree *= phase
end
! ---

View File

@ -0,0 +1,105 @@
subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
implicit none
BEGIN_DOC
!
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
! Returns the total matrix element
!! WARNING !!
!
! Non hermitian !!
!
END_DOC
use bitmasks
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe, hthree
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
end
subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
BEGIN_DOC
!
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
! Returns the detail of the matrix element in terms of single, two and three electron contribution.
!! WARNING !!
!
! Non hermitian !!
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: degree
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
hthree = 0.D0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0)then
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
else if (degree == 1)then
call single_htilde_mu_mat_fock_bi_ortho(Nint,key_j, key_i , hmono, htwoe, hthree, htot)
else if(degree == 2)then
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
endif
if(degree==0) then
htot += nuclear_repulsion
endif
end
! ---
subroutine htilde_mu_mat_opt_bi_ortho_no_3e(key_j, key_i, Nint, htot)
BEGIN_DOC
!
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
!!
! Returns the detail of the matrix element WITHOUT ANY CONTRIBUTION FROM THE THREE ELECTRON TERMS
!! WARNING !!
!
! Non hermitian !!
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: htot
integer :: degree
htot = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0)then
call diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_i,htot)
else if (degree == 1)then
call single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint,key_j, key_i , htot)
else if(degree == 2)then
call double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
endif
if(degree==0) then
htot += nuclear_repulsion
endif
end
! ---

View File

@ -0,0 +1,473 @@
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
implicit none
BEGIN_DOC
! Various component of the TC energy for the reference "HF" Slater determinant
END_DOC
double precision :: hmono, htwoe, htot, hthree
call diag_htilde_mu_mat_bi_ortho(N_int,HF_bitmask , hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc)then
call diag_htilde_three_body_ints_bi_ort(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e
END_PROVIDER
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
implicit none
BEGIN_DOC
! Computes $\langle i|H|i \rangle$.
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot,hthree
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: i, nexc(2), ispin
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer(bit_kind) :: det_tmp(Nint,2)
integer :: na, nb
ASSERT (Nint > 0)
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i=1,Nint
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),det_in(i,1))
particle(i,2) = iand(hole(i,2),det_in(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
if (nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree= ref_tc_energy_3e
htot = ref_tc_energy_tot
return
endif
!call debug_det(det_in,Nint)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
det_tmp = ref_bitmask
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree= ref_tc_energy_3e
do ispin=1,2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
!DIR$ FORCEINLINE
call ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
!DIR$ FORCEINLINE
call a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
enddo
enddo
htot = hmono+htwoe+hthree
end
subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the ADDITION of that electron
!
! and the quantities hmono,htwoe,hthree are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
stop -1
endif
if (iorb > mo_num) then
print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num
stop -1
endif
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
ASSERT (tmp(2) == elec_beta_num)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k >0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
ASSERT (l >= 0)
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc)then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
!! oposite-spin/opposite-spin
do j = 1, nb
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
endif
na = na+1
end
subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the REMOVAL of that electron
!
! and the quantities hmono,htwoe,hthree are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
integer :: tmp(2)
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k>0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
na = na-1
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc)then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree -= (direct_int - exchange_int)
enddo
enddo
!! oposite-spin/opposite-spin
do j = 1, nb
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree -= (direct_int - exchange_int)
enddo
enddo
endif
end
subroutine diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, det_in,htot)
implicit none
BEGIN_DOC
! Computes $\langle i|H|i \rangle$. WITHOUT ANY CONTRIBUTIONS FROM 3E TERMS
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono,htwoe
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: i, nexc(2), ispin
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer(bit_kind) :: det_tmp(Nint,2)
integer :: na, nb
ASSERT (Nint > 0)
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i=1,Nint
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),det_in(i,1))
particle(i,2) = iand(hole(i,2),det_in(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
if (nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
htot = ref_tc_energy_tot
return
endif
!call debug_det(det_in,Nint)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
det_tmp = ref_bitmask
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
do ispin=1,2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
!DIR$ FORCEINLINE
call ac_tc_operator_no_3e( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
!DIR$ FORCEINLINE
call a_tc_operator_no_3e ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
enddo
enddo
htot = hmono+htwoe
end
subroutine ac_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the ADDITION of that electron
!
! and the quantities hmono,htwoe are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
stop -1
endif
if (iorb > mo_num) then
print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num
stop -1
endif
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
ASSERT (tmp(2) == elec_beta_num)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k >0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
ASSERT (l >= 0)
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
na = na+1
end
subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the REMOVAL of that electron
!
! and the quantities hmono,htwoe are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
integer :: tmp(2)
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k>0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
na = na-1
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
end

View File

@ -0,0 +1,476 @@
subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
if(degree.ne.2)then
return
endif
integer :: degree_i,degree_j
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
if(three_body_h_tc)then
if(.not.double_normal_ord)then
if(degree_i>degree_j)then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
endif
endif
else
! same spin two-body
! direct terms
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
if(three_body_h_tc)then
if(.not.double_normal_ord)then
if(degree_i>degree_j)then
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
else
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
endif
elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
endif
endif
endif
hthree *= phase
htwoe *= phase
htot = htwoe + hthree
end
subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
implicit none
integer(bit_kind), intent(in) :: key_i(N_int,2)
integer, intent(in) :: h1,h2,p1,p2,s1,s2
double precision, intent(out) :: hthree
integer :: nexc(2),i,ispin,na,nb
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: particle(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(N_int,2)
integer :: ipart, ihole
double precision :: direct_int, exchange_int
nexc(1) = 0
nexc(2) = 0
!! Get all the holes and particles of key_i with respect to the ROHF determinant
do i=1,N_int
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),key_i(i,1))
particle(i,2) = iand(hole(i,2),key_i(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
if(s1==s2.and.s1==1)then
!!!!!!!!!!!!!!!!!!!!!!!!!! alpha/alpha double exc
hthree = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 1 ! i==alpha ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 2 ! i==beta ==> alpha/alpha/beta terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
elseif(s1==s2.and.s1==2)then
!!!!!!!!!!!!!!!!!!!!!!!!!! beta/beta double exc
hthree = eff_2_e_from_3_e_bb(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 2 ! i==beta ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 1 ! i==alpha==> beta/beta/alpha terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and (h2,p2)
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
else ! (h1,p1) == alpha/(h2,p2) == beta
hthree = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
!!!!!!!! the matrix element is already exact
!!!!!!!! else you need to take care of holes and particles
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
ispin = 1 ! i==alpha ==> alpha/beta/alpha terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h1,p1) and i
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch13_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
ispin = 2 ! i==beta ==> alpha/beta/beta terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
! exchange between (h2,p2) and i
ipart=occ_particle(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(ipart,p2,h2,p1,h1)
hthree += direct_int - exchange_int
ihole=occ_hole(i,ispin)
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
exchange_int = three_e_5_idx_exch23_bi_ort(ihole,p2,h2,p1,h1)
hthree -= direct_int - exchange_int
enddo
endif
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_ab, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/beta double excitations
!
! from contraction with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_beta a_h2_beta a_h1_alpha
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_abab(1,1,1,1,occ,Ne,contrib)
eff_2_e_from_3_e_ab = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_ab)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! alpha
h1 = list_act(hh1)
do hh2 = 1, n_act_orb !! beta
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! alpha
p1 = list_act(pp1)
do pp2 = 1, n_act_orb !! beta
p2 = list_act(pp2)
call give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_ab(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_beta
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == alpha
!! h2,p2 == beta
contrib = 0.d0
do mm = 1, Ne(1) !! alpha
m = occ(mm,1)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and m
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
do mm = 1, Ne(2) !! beta
m = occ(mm,2)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h2,p2) and m
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_aa, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/alpha double excitations
!
! from contractionelec_alpha_num with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_alpha a_h2_alpha a_h1_alpha
!
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
!
! |||| h2>h1, p2>p1 ||||
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_aaaa(1 ,1 ,1 ,1 ,occ,Ne,contrib)
eff_2_e_from_3_e_aa = 100000000.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_aa)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! alpha
h1 = list_act(hh1)
do hh2 = hh1+1, n_act_orb !! alpha
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! alpha
p1 = list_act(pp1)
do pp2 = pp1+1, n_act_orb !! alpha
p2 = list_act(pp2)
call give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_aa(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_alpha
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == alpha
!! h2,p2 == alpha
contrib = 0.d0
do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(2) !! beta
m = occ(mm,2)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
end
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_bb, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for beta/beta double excitations
!
! from contractionelec_beta_num with HF density = a^{dagger}_p1_beta a^{dagger}_p2_beta a_h2_beta a_h1_beta
!
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
!
! |||| h2>h1, p2>p1 ||||
END_DOC
integer :: i,h1,p1,h2,p2
integer :: hh1,hh2,pp1,pp2,m,mm
integer :: Ne(2)
integer, allocatable :: occ(:,:)
double precision :: contrib
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
call give_contrib_for_bbbb(1,1 ,1 ,1 ,occ,Ne,contrib)
eff_2_e_from_3_e_bb = 100000000.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_bb)
!$OMP DO SCHEDULE (static)
do hh1 = 1, n_act_orb !! beta
h1 = list_act(hh1)
do hh2 = hh1+1, n_act_orb !! beta
h2 = list_act(hh2)
do pp1 = 1, n_act_orb !! beta
p1 = list_act(pp1)
do pp2 = pp1+1, n_act_orb !! beta
p2 = list_act(pp2)
call give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
eff_2_e_from_3_e_bb(p2,p1,h2,h1) = contrib
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
implicit none
BEGIN_DOC
! gives the contribution for a double excitation (h1,p1)_beta (h2,p2)_beta
!
! on top of a determinant whose occupied orbitals is in (occ, Ne)
END_DOC
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
!! h1,p1 == beta
!! h2,p2 == beta
contrib = 0.d0
do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(1) !! alpha
m = occ(mm,1)
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
! exchange between (h1,p1) and (h2,p2)
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
contrib += direct_int - exchange_int
enddo
end
subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int,phase
call get_excitation_degree(key_i, key_j, degree, Nint)
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
if(degree.ne.2)then
return
endif
integer :: degree_i,degree_j
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
call get_double_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
if(s1.ne.s2)then
! opposite spin two-body
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
else
! same spin two-body
! direct terms
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
! exchange terms
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
endif
htwoe *= phase
htot = htwoe
end

View File

@ -0,0 +1,572 @@
subroutine single_htilde_mu_mat_fock_bi_ortho (Nint, key_j, key_i, hmono, htwoe, hthree, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int, phase
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
other_spin(1) = 2
other_spin(2) = 1
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.ne.1)then
return
endif
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
call get_single_excitation_from_fock_tc(key_i,key_j,h1,p1,s1,phase,hmono,htwoe,hthree,htot)
end
subroutine get_single_excitation_from_fock_tc(key_i,key_j,h,p,spin,phase,hmono,htwoe,hthree,htot)
use bitmasks
implicit none
integer,intent(in) :: h,p,spin
double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2)
double precision, intent(out) :: hmono,htwoe,hthree,htot
integer(bit_kind) :: differences(N_int,2)
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: partcl(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_partcl(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i
double precision :: buffer_c(mo_num),buffer_x(mo_num)
do i=1, mo_num
buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
enddo
do i = 1, N_int
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
partcl(i,1) = iand(differences(i,1),key_i(i,1))
partcl(i,2) = iand(differences(i,2),key_i(i,2))
enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
hmono = mo_bi_ortho_tc_one_e(p,h)
htwoe = fock_op_2_e_tc_closed_shell(p,h)
! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1)
htwoe -= buffer_c(i)
enddo
do i0 = 1, n_occ_ab_hole(2)
i = occ_hole(i0,2)
htwoe -= buffer_c(i)
enddo
! holes :: exchange terms
do i0 = 1, n_occ_ab_hole(spin)
i = occ_hole(i0,spin)
htwoe += buffer_x(i)
enddo
! particles :: direct terms
do i0 = 1, n_occ_ab_partcl(1)
i = occ_partcl(i0,1)
htwoe += buffer_c(i)
enddo
do i0 = 1, n_occ_ab_partcl(2)
i = occ_partcl(i0,2)
htwoe += buffer_c(i)
enddo
! particles :: exchange terms
do i0 = 1, n_occ_ab_partcl(spin)
i = occ_partcl(i0,spin)
htwoe -= buffer_x(i)
enddo
hthree = 0.d0
if (three_body_h_tc)then
call three_comp_fock_elem(key_i,h,p,spin,hthree)
endif
htwoe = htwoe * phase
hmono = hmono * phase
hthree = hthree * phase
htot = htwoe + hmono + hthree
end
subroutine three_comp_fock_elem(key_i,h_fock,p_fock,ispin_fock,hthree)
implicit none
integer,intent(in) :: h_fock,p_fock,ispin_fock
integer(bit_kind), intent(in) :: key_i(N_int,2)
double precision, intent(out) :: hthree
integer :: nexc(2),i,ispin,na,nb
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: particle(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(N_int,2)
nexc(1) = 0
nexc(2) = 0
!! Get all the holes and particles of key_i with respect to the ROHF determinant
do i=1,N_int
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),key_i(i,1))
particle(i,2) = iand(hole(i,2),key_i(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
!! Initialize the matrix element with the reference ROHF Slater determinant Fock element
if(ispin_fock==1)then
hthree = fock_a_tot_3e_bi_orth(p_fock,h_fock)
else
hthree = fock_b_tot_3e_bi_orth(p_fock,h_fock)
endif
det_tmp = ref_bitmask
do ispin=1,2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
!DIR$ FORCEINLINE
call fock_ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb)
!DIR$ FORCEINLINE
call fock_a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb)
enddo
enddo
end
subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes the contribution to the three-electron part of the Fock operator
!
! a^dagger_{p_fock} a_{h_fock} of spin ispin_fock
!
! on top of a determinant 'key' on which you ADD an electron of spin ispin in orbital iorb
!
! in output, the determinant key is changed by the ADDITION of that electron
!
! the output hthree is INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint, h_fock,p_fock, ispin_fock
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,j
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
stop -1
endif
if (iorb > mo_num) then
print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num
stop -1
endif
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
ASSERT (tmp(2) == elec_beta_num)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k >0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
ASSERT (l >= 0)
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!! spin of other electrons == ispin
if(ispin == ispin_fock)then
!! in what follows :: jj == other electrons in the determinant
!! :: iorb == electron that has been added of spin ispin
!! :: p_fock, h_fock == hole particle of spin ispin_fock
!! jj = ispin = ispin_fock >> pure parallel spin
do j = 1, na
jj = occ(j,ispin)
hthree += three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
enddo
!! spin of jj == other spin than ispin AND ispin_fock
!! exchange between the iorb and (h_fock, p_fock)
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree += direct_int - exchange_int
enddo
else !! ispin NE to ispin_fock
!! jj = ispin BUT NON EQUAL TO ispin_fock
!! exchange between the jj and iorb
do j = 1, na
jj = occ(j,ispin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch23_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree += direct_int - exchange_int
enddo
!! jj = other_spin than ispin BUT jj == ispin_fock
!! exchange between jj and (h_fock,p_fock)
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch13_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree += direct_int - exchange_int
enddo
endif
na = na+1
end
subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes the contribution to the three-electron part of the Fock operator
!
! a^dagger_{p_fock} a_{h_fock} of spin ispin_fock
!
! on top of a determinant 'key' on which you REMOVE an electron of spin ispin in orbital iorb
!
! in output, the determinant key is changed by the REMOVAL of that electron
!
! the output hthree is INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint, h_fock,p_fock, ispin_fock
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hthree
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
integer :: tmp(2)
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k>0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
na = na-1
!! spin of other electrons == ispin
if(ispin == ispin_fock)then
!! in what follows :: jj == other electrons in the determinant
!! :: iorb == electron that has been added of spin ispin
!! :: p_fock, h_fock == hole particle of spin ispin_fock
!! jj = ispin = ispin_fock >> pure parallel spin
do j = 1, na
jj = occ(j,ispin)
hthree -= three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
enddo
!! spin of jj == other spin than ispin AND ispin_fock
!! exchange between the iorb and (h_fock, p_fock)
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree -= direct_int - exchange_int
enddo
else !! ispin NE to ispin_fock
!! jj = ispin BUT NON EQUAL TO ispin_fock
!! exchange between the jj and iorb
do j = 1, na
jj = occ(j,ispin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch23_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree -= direct_int - exchange_int
enddo
!! jj = other_spin than ispin BUT jj == ispin_fock
!! exchange between jj and (h_fock,p_fock)
do j = 1, nb
jj = occ(j,other_spin)
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
exchange_int = three_e_4_idx_exch13_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
hthree -= direct_int - exchange_int
enddo
endif
end
BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Closed-shell part of the Fock operator for the TC operator
END_DOC
integer :: h0,p0,h,p,k0,k,i
integer :: n_occ_ab(2)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab_virt(2)
integer :: occ_virt(N_int*bit_kind_size,2)
integer(bit_kind) :: key_test(N_int)
integer(bit_kind) :: key_virt(N_int,2)
double precision :: accu
fock_op_2_e_tc_closed_shell = -1000.d0
call bitstring_to_list_ab(ref_closed_shell_bitmask, occ, n_occ_ab, N_int)
do i = 1, N_int
key_virt(i,1) = full_ijkl_bitmask(i)
key_virt(i,2) = full_ijkl_bitmask(i)
key_virt(i,1) = xor(key_virt(i,1),ref_closed_shell_bitmask(i,1))
key_virt(i,2) = xor(key_virt(i,2),ref_closed_shell_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_virt, occ_virt, n_occ_ab_virt, N_int)
! docc ---> virt single excitations
do h0 = 1, n_occ_ab(1)
h=occ(h0,1)
do p0 = 1, n_occ_ab_virt(1)
p = occ_virt(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
do h0 = 1, n_occ_ab_virt(1)
h = occ_virt(h0,1)
do p0 = 1, n_occ_ab(1)
p=occ(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
! virt ---> virt single excitations
do h0 = 1, n_occ_ab_virt(1)
h=occ_virt(h0,1)
do p0 = 1, n_occ_ab_virt(1)
p = occ_virt(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
do h0 = 1, n_occ_ab_virt(1)
h = occ_virt(h0,1)
do p0 = 1, n_occ_ab_virt(1)
p=occ_virt(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
! docc ---> docc single excitations
do h0 = 1, n_occ_ab(1)
h=occ(h0,1)
do p0 = 1, n_occ_ab(1)
p = occ(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
do h0 = 1, n_occ_ab(1)
h = occ(h0,1)
do p0 = 1, n_occ_ab(1)
p=occ(p0,1)
accu = 0.d0
do k0 = 1, n_occ_ab(1)
k = occ(k0,1)
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
enddo
fock_op_2_e_tc_closed_shell(p,h) = accu
enddo
enddo
! do i = 1, mo_num
! write(*,'(100(F10.5,X))')fock_op_2_e_tc_closed_shell(:,i)
! enddo
END_PROVIDER
subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
BEGIN_DOC
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
!!
!! WARNING !!
!
! Non hermitian !!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2)
integer :: h1, p1, h2, p2, s1, s2
double precision :: get_mo_two_e_integral_tc_int, phase
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
integer :: other_spin(2)
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
other_spin(1) = 2
other_spin(2) = 1
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.ne.1)then
return
endif
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
call get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h1,p1,s1,phase,hmono,htwoe,htot)
end
subroutine get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h,p,spin,phase,hmono,htwoe,htot)
use bitmasks
implicit none
integer,intent(in) :: h,p,spin
double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2)
double precision, intent(out) :: hmono,htwoe,htot
integer(bit_kind) :: differences(N_int,2)
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: partcl(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_partcl(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i
double precision :: buffer_c(mo_num),buffer_x(mo_num)
do i=1, mo_num
buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
enddo
do i = 1, N_int
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
partcl(i,1) = iand(differences(i,1),key_i(i,1))
partcl(i,2) = iand(differences(i,2),key_i(i,2))
enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
hmono = mo_bi_ortho_tc_one_e(p,h)
htwoe = fock_op_2_e_tc_closed_shell(p,h)
! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1)
htwoe -= buffer_c(i)
enddo
do i0 = 1, n_occ_ab_hole(2)
i = occ_hole(i0,2)
htwoe -= buffer_c(i)
enddo
! holes :: exchange terms
do i0 = 1, n_occ_ab_hole(spin)
i = occ_hole(i0,spin)
htwoe += buffer_x(i)
enddo
! particles :: direct terms
do i0 = 1, n_occ_ab_partcl(1)
i = occ_partcl(i0,1)
htwoe += buffer_c(i)
enddo
do i0 = 1, n_occ_ab_partcl(2)
i = occ_partcl(i0,2)
htwoe += buffer_c(i)
enddo
! particles :: exchange terms
do i0 = 1, n_occ_ab_partcl(spin)
i = occ_partcl(i0,spin)
htwoe -= buffer_x(i)
enddo
htwoe = htwoe * phase
hmono = hmono * phase
htot = htwoe + hmono
end

View File

@ -0,0 +1,111 @@
subroutine give_all_perm_for_three_e(n,l,k,m,j,i,idx_list,phase)
implicit none
BEGIN_DOC
! returns all the list of permutting indices for the antimmetrization of
!
! (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
!
! idx_list(:,i) == list of the 6 indices corresponding the permutation "i"
!
! phase(i) == phase of the permutation "i"
!
! there are in total 6 permutations with different indices
END_DOC
integer, intent(in) :: n,l,k,m,j,i
integer, intent(out) :: idx_list(6,6)
double precision :: phase(6)
integer :: list(6)
!!! CYCLIC PERMUTATIONS
phase(1:3) = 1.d0
!!! IDENTITY PERMUTATION
list = (/n,l,k,m,j,i/)
idx_list(:,1) = list(:)
!!! FIRST CYCLIC PERMUTATION
list = (/n,l,k,j,i,m/)
idx_list(:,2) = list(:)
!!! FIRST CYCLIC PERMUTATION
list = (/n,l,k,i,m,j/)
idx_list(:,3) = list(:)
!!! NON CYCLIC PERMUTATIONS
phase(1:3) = -1.d0
!!! PARTICLE 1 is FIXED
list = (/n,l,k,j,m,i/)
idx_list(:,4) = list(:)
!!! PARTICLE 2 is FIXED
list = (/n,l,k,i,j,m/)
idx_list(:,5) = list(:)
!!! PARTICLE 3 is FIXED
list = (/n,l,k,m,i,j/)
idx_list(:,6) = list(:)
end
double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i)
implicit none
BEGIN_DOC
! returns all good combinations of permutations of integrals with the good signs
!
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
END_DOC
integer, intent(in) :: n,l,k,m,j,i
sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct
+ three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation
+ three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation
- three_body_ints_bi_ort(n,l,k,j,m,i) & ! elec 1 is kept fixed
- three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed
- three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed
end
double precision function direct_sym_3_e_int(n,l,k,m,j,i)
implicit none
BEGIN_DOC
! returns all good combinations of permutations of integrals with the good signs
!
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
END_DOC
integer, intent(in) :: n,l,k,m,j,i
double precision :: integral
direct_sym_3_e_int = 0.d0
call give_integrals_3_body_bi_ort(n,l,k,m,j,i,integral) ! direct
direct_sym_3_e_int += integral
call give_integrals_3_body_bi_ort(n,l,k,j,i,m,integral) ! 1st cyclic permutation
direct_sym_3_e_int += integral
call give_integrals_3_body_bi_ort(n,l,k,i,m,j,integral) ! 2nd cyclic permutation
direct_sym_3_e_int += integral
call give_integrals_3_body_bi_ort(n,l,k,j,m,i,integral) ! elec 1 is kept fixed
direct_sym_3_e_int += -integral
call give_integrals_3_body_bi_ort(n,l,k,i,j,m,integral) ! elec 2 is kept fixed
direct_sym_3_e_int += -integral
call give_integrals_3_body_bi_ort(n,l,k,m,i,j,integral) ! elec 3 is kept fixed
direct_sym_3_e_int += -integral
end
double precision function three_e_diag_parrallel_spin(m,j,i)
implicit none
integer, intent(in) :: i,j,m
three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct
three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations
- three_e_3_idx_exch23_bi_ort(m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
- three_e_3_idx_exch12_bi_ort(m,j,i) ! last exchange
end
double precision function three_e_single_parrallel_spin(m,j,k,i)
implicit none
integer, intent(in) :: i,k,j,m
three_e_single_parrallel_spin = three_e_4_idx_direct_bi_ort(m,j,k,i) ! direct
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_2_bi_ort(m,j,k,i) & ! two cyclic permutations
- three_e_4_idx_exch23_bi_ort(m,j,k,i) - three_e_4_idx_exch13_bi_ort(m,j,k,i) & ! two first exchange
- three_e_4_idx_exch12_bi_ort(m,j,k,i) ! last exchange
end
double precision function three_e_double_parrallel_spin(m,l,j,k,i)
implicit none
integer, intent(in) :: i,k,j,m,l
three_e_double_parrallel_spin = three_e_5_idx_direct_bi_ort(m,l,j,k,i) ! direct
three_e_double_parrallel_spin += three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) & ! two cyclic permutations
- three_e_5_idx_exch23_bi_ort(m,l,j,k,i) - three_e_5_idx_exch13_bi_ort(m,l,j,k,i) & ! two first exchange
- three_e_5_idx_exch12_bi_ort(m,l,j,k,i) ! last exchange
end

View File

@ -0,0 +1,140 @@
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
!
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
three_e_diag_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
three_e_single_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
integral = three_e_single_parrallel_spin(1,1,1,1)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
three_e_double_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
call wall_time(wall0)
integral = three_e_double_parrallel_spin(1,1,1,1,1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
END_PROVIDER

View File

@ -0,0 +1,61 @@
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine_diag
! call test
end
subroutine test
implicit none
integer :: i,j
double precision :: hmono,htwoe,hthree,htot
use bitmasks
print*,'test'
! call htilde_mu_mat_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
call double_htilde_mu_mat_bi_ortho(N_int,psi_det(1,1,1), psi_det(1,1,2), hmono, htwoe, htot)
print*,hmono, htwoe, htot
end
subroutine routine_diag
implicit none
! provide eigval_right_tc_bi_orth
provide overlap_bi_ortho
! provide htilde_matrix_elmt_bi_ortho
integer ::i,j
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)
print*,'e_tc_left_right = ',e_tc_left_right
print*,'e_tilde_bi_orth_00 = ',e_tilde_bi_orth_00
print*,'e_pt2_tc_bi_orth = ',e_pt2_tc_bi_orth
print*,'e_pt2_tc_bi_orth_single = ',e_pt2_tc_bi_orth_single
print*,'e_pt2_tc_bi_orth_double = ',e_pt2_tc_bi_orth_double
print*,'***'
print*,'e_corr_bi_orth = ',e_corr_bi_orth
print*,'e_corr_bi_orth_proj = ',e_corr_bi_orth_proj
print*,'e_corr_single_bi_orth = ',e_corr_single_bi_orth
print*,'e_corr_double_bi_orth = ',e_corr_double_bi_orth
print*,'Left/right eigenvectors'
do i = 1,N_det
write(*,'(I5,X,(100(F12.7,X)))')i,leigvec_tc_bi_orth(i,1),reigvec_tc_bi_orth(i,1)
enddo
do j=1,N_states
do i=1,N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho
call save_tc_bi_ortho_wavefunction
! call routine_save_left_right_bi_ortho
end

View File

@ -0,0 +1,24 @@
program tc_bi_ortho_prop
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call routine_diag
call test
end
subroutine test
implicit none
integer :: i
print*,'TC Dipole components'
do i= 1, 3
print*,tc_bi_ortho_dipole(i,1)
enddo
end

View File

@ -0,0 +1,24 @@
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test
end
subroutine test
implicit none
! double precision, allocatable :: dressing_dets(:),e_corr_dets(:)
! allocate(dressing_dets(N_det),e_corr_dets(N_det))
! e_corr_dets = 0.d0
! call get_cisd_sc2_dressing(psi_det,e_corr_dets,N_det,dressing_dets)
provide eigval_tc_cisd_sc2_bi_ortho
end

View File

@ -0,0 +1,145 @@
BEGIN_PROVIDER [ double precision, reigvec_tc_cisd_sc2_bi_ortho, (N_det,N_states)]
&BEGIN_PROVIDER [ double precision, leigvec_tc_cisd_sc2_bi_ortho, (N_det,N_states)]
&BEGIN_PROVIDER [ double precision, eigval_tc_cisd_sc2_bi_ortho, (N_states)]
implicit none
integer :: it,n_real,degree,i,istate
double precision :: e_before, e_current,thr, hmono,htwoe,hthree,accu
double precision, allocatable :: e_corr_dets(:),h0j(:), h_sc2(:,:), dressing_dets(:)
double precision, allocatable :: leigvec_tc_bi_orth_tmp(:,:),reigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
allocate(leigvec_tc_bi_orth_tmp(N_det,N_det),reigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det))
allocate(e_corr_dets(N_det),h0j(N_det),h_sc2(N_det,N_det),dressing_dets(N_det))
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),eigval_tmp(N_states))
dressing_dets = 0.d0
do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 1 .or. degree == 2)then
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
endif
enddo
reigvec_tc_bi_orth_tmp = 0.d0
do i = 1, N_det
reigvec_tc_bi_orth_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
enddo
vec_tmp = 0.d0
do istate = 1, N_states
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
enddo
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
print*,'Diagonalizing the TC CISD '
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
do i = 1, N_det
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
enddo
E_before = eigval_tmp(1)
print*,'Starting from ',E_before
e_current = 10.d0
thr = 1.d-5
it = 0
dressing_dets = 0.d0
double precision, allocatable :: H_jj(:),vec_tmp(:,:),eigval_tmp(:)
external htc_bi_ortho_calc_tdav
external htcdag_bi_ortho_calc_tdav
logical :: converged
do while (dabs(E_before-E_current).gt.thr)
it += 1
E_before = E_current
! h_sc2 = htilde_matrix_elmt_bi_ortho
call get_cisd_sc2_dressing(psi_det,e_corr_dets,N_det,dressing_dets)
do i = 1, N_det
! print*,'dressing_dets(i) = ',dressing_dets(i)
h_sc2(i,i) += dressing_dets(i)
enddo
print*,'********************'
print*,'iteration ',it
! call non_hrmt_real_diag(N_det,h_sc2,&
! leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
! n_real,eigval_right_tmp)
! print*,'eigval_right_tmp(1)',eigval_right_tmp(1)
vec_tmp = 0.d0
do istate = 1, N_states
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
enddo
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
print*,'outside Davidson'
print*,'eigval_tmp(1) = ',eigval_tmp(1)
do i = 1, N_det
reigvec_tc_bi_orth_tmp(i,1) = vec_tmp(i,1)
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
enddo
! E_current = eigval_right_tmp(1)
E_current = eigval_tmp(1)
print*,'it, E(SC)^2 = ',it,E_current
enddo
eigval_tc_cisd_sc2_bi_ortho(1:N_states) = eigval_right_tmp(1:N_states)
reigvec_tc_cisd_sc2_bi_ortho(1:N_det,1:N_states) = reigvec_tc_bi_orth_tmp(1:N_det,1:N_states)
leigvec_tc_cisd_sc2_bi_ortho(1:N_det,1:N_states) = leigvec_tc_bi_orth_tmp(1:N_det,1:N_states)
END_PROVIDER
subroutine get_cisd_sc2_dressing(dets,e_corr_dets,ndet,dressing_dets)
implicit none
use bitmasks
integer, intent(in) :: ndet
integer(bit_kind), intent(in) :: dets(N_int,2,ndet)
double precision, intent(in) :: e_corr_dets(ndet)
double precision, intent(out) :: dressing_dets(ndet)
integer, allocatable :: degree(:),hole(:,:),part(:,:),spin(:,:)
integer(bit_kind), allocatable :: hole_part(:,:,:)
integer :: i,j,k, exc(0:2,2,2),h1,p1,h2,p2,s1,s2
integer(bit_kind) :: xorvec(2,N_int)
double precision :: phase
dressing_dets = 0.d0
allocate(degree(ndet),hole(2,ndet),part(2,ndet), spin(2,ndet),hole_part(N_int,2,ndet))
do i = 2, ndet
call get_excitation_degree(HF_bitmask,dets(1,1,i),degree(i),N_int)
do j = 1, N_int
hole_part(j,1,i) = xor( HF_bitmask(j,1), dets(j,1,i))
hole_part(j,2,i) = xor( HF_bitmask(j,2), dets(j,2,i))
enddo
if(degree(i) == 1)then
call get_single_excitation(HF_bitmask,psi_det(1,1,i),exc,phase,N_int)
else if(degree(i) == 2)then
call get_double_excitation(HF_bitmask,psi_det(1,1,i),exc,phase,N_int)
endif
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
hole(1,i) = h1
hole(2,i) = h2
part(1,i) = p1
part(2,i) = p2
spin(1,i) = s1
spin(2,i) = s2
enddo
integer :: same
if(elec_alpha_num+elec_beta_num<3)return
do i = 2, ndet
do j = i+1, ndet
same = 0
if(degree(i) == degree(j) .and. degree(i)==1)cycle
do k = 1, N_int
xorvec(k,1) = iand(hole_part(k,1,i),hole_part(k,1,j))
xorvec(k,2) = iand(hole_part(k,2,i),hole_part(k,2,j))
same += popcnt(xorvec(k,1)) + popcnt(xorvec(k,2))
enddo
! print*,'i,j',i,j
! call debug_det(dets(1,1,i),N_int)
! call debug_det(hole_part(1,1,i),N_int)
! call debug_det(dets(1,1,j),N_int)
! call debug_det(hole_part(1,1,j),N_int)
! print*,'same = ',same
if(same.eq.0)then
dressing_dets(i) += e_corr_dets(j)
dressing_dets(j) += e_corr_dets(i)
endif
enddo
enddo
end

View File

@ -0,0 +1,183 @@
use bitmasks
BEGIN_PROVIDER [ integer, index_HF_psi_det]
implicit none
integer :: i,degree
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 0)then
index_HF_psi_det = i
exit
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
BEGIN_DOC
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
END_DOC
implicit none
integer :: i, idx_dress, j, istate
logical :: converged, dagger
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
PROVIDE N_det N_int
if(n_det.le.N_det_max_full)then
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det))
call non_hrmt_real_diag(N_det,htilde_matrix_elmt_bi_ortho,&
leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
n_real_tc_bi_orth_eigval_right,eigval_right_tmp)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
integer, allocatable :: iorder(:)
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
do i = 1,N_det
iorder(i) = i
coef_hf_r(i) = -dabs(reigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
enddo
call dsort(coef_hf_r,iorder,N_det)
igood_r = iorder(1)
print*,'igood_r, coef_hf_r = ',igood_r,coef_hf_r(1)
do i = 1,N_det
iorder(i) = i
coef_hf_l(i) = -dabs(leigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
enddo
call dsort(coef_hf_l,iorder,N_det)
igood_l = iorder(1)
print*,'igood_l, coef_hf_l = ',igood_l,coef_hf_l(1)
if(igood_r.ne.igood_l.and.igood_r.ne.1)then
print *,''
print *,'Warning, the left and right eigenvectors are "not the same" '
print *,'Warning, the ground state is not dominated by HF...'
print *,'State with largest RIGHT coefficient of HF ',igood_r
print *,'coef of HF in RIGHT eigenvector = ',reigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_r)
print *,'State with largest LEFT coefficient of HF ',igood_l
print *,'coef of HF in LEFT eigenvector = ',leigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_l)
endif
if(state_following_tc)then
print *,'Following the states with the largest coef on HF'
print *,'igood_r,igood_l',igood_r,igood_l
i= igood_r
eigval_right_tc_bi_orth(1) = eigval_right_tmp(i)
do j = 1, N_det
reigvec_tc_bi_orth(j,1) = reigvec_tc_bi_orth_tmp(j,i)
! print*,reigvec_tc_bi_orth(j,1)
enddo
i= igood_l
eigval_left_tc_bi_orth(1) = eigval_right_tmp(i)
do j = 1, N_det
leigvec_tc_bi_orth(j,1) = leigvec_tc_bi_orth_tmp(j,i)
enddo
else
do i = 1, N_states
eigval_right_tc_bi_orth(i) = eigval_right_tmp(i)
eigval_left_tc_bi_orth(i) = eigval_right_tmp(i)
do j = 1, N_det
reigvec_tc_bi_orth(j,i) = reigvec_tc_bi_orth_tmp(j,i)
leigvec_tc_bi_orth(j,i) = leigvec_tc_bi_orth_tmp(j,i)
enddo
enddo
endif
else
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
external htc_bi_ortho_calc_tdav
external htcdag_bi_ortho_calc_tdav
external H_tc_u_0_opt
external H_tc_dagger_u_0_opt
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
do i = 1, N_det
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
enddo
!!!! Preparing the left-eigenvector
print*,'Computing the left-eigenvector '
vec_tmp = 0.d0
do istate = 1, N_states
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
enddo
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav)
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt)
do istate = 1, N_states
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo
print*,'Computing the right-eigenvector '
!!!! Preparing the right-eigenvector
vec_tmp = 0.d0
do istate = 1, N_states
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
enddo
do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0
enddo
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
do istate = 1, N_states
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
enddo
deallocate(H_jj)
endif
call bi_normalize(leigvec_tc_bi_orth,reigvec_tc_bi_orth,size(reigvec_tc_bi_orth,1),N_det,N_states)
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ',leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1)
norm_ground_left_right_bi_orth = 0.d0
do j = 1, N_det
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,1) * reigvec_tc_bi_orth(j,1)
enddo
print*,'norm l/r = ',norm_ground_left_right_bi_orth
END_PROVIDER
subroutine bi_normalize(u_l,u_r,n,ld,nstates)
!!!! Normalization of the scalar product of the left/right eigenvectors
double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates)
integer, intent(in) :: n,ld,nstates
integer :: i
double precision :: accu, tmp
do i = 1, nstates
!!!! Normalization of right eigenvectors |Phi>
accu = 0.d0
do j = 1, n
accu += u_r(j,i) * u_r(j,i)
enddo
accu = 1.d0/dsqrt(accu)
print*,'accu_r = ',accu
do j = 1, n
u_r(j,i) *= accu
enddo
tmp = u_r(1,i) / dabs(u_r(1,i))
do j = 1, n
u_r(j,i) *= tmp
enddo
!!!! Adaptation of the norm of the left eigenvector such that <chi|Phi> = 1
accu = 0.d0
do j = 1, n
accu += u_l(j,i) * u_r(j,i)
! print*,j, u_l(j,i) , u_r(j,i)
enddo
if(accu.gt.0.d0)then
accu = 1.d0/dsqrt(accu)
else
accu = 1.d0/dsqrt(-accu)
endif
tmp = (u_l(1,i) * u_r(1,i) )/dabs(u_l(1,i) * u_r(1,i))
do j = 1, n
u_l(j,i) *= accu * tmp
u_r(j,i) *= accu
enddo
enddo
end

View File

@ -0,0 +1,45 @@
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho, (N_det,N_det)]
BEGIN_DOC
! htilde_matrix_elmt_bi_ortho(j,i) = <J| H^tilde |I>
!
! WARNING !!!!!!!!! IT IS NOT HERMITIAN !!!!!!!!!
END_DOC
implicit none
integer :: i, j
double precision :: hmono,htwoe,hthree,htot
PROVIDE N_int
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hmono, htwoe, hthree, htot) &
!$OMP SHARED (N_det, psi_det, N_int,htilde_matrix_elmt_bi_ortho)
do i = 1, N_det
do j = 1, N_det
! < J | Htilde | I >
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
!print *, ' hmono = ', hmono
!print *, ' htwoe = ', htwoe
!print *, ' hthree = ', hthree
htilde_matrix_elmt_bi_ortho(j,i) = htot
enddo
enddo
!$OMP END PARALLEL DO
! print*,'htilde_matrix_elmt_bi_ortho = '
! do i = 1, min(100,N_det)
! write(*,'(100(F16.10,X))')htilde_matrix_elmt_bi_ortho(1:min(100,N_det),i)
! enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)]
implicit none
integer ::i,j
do i = 1, N_det
do j = 1, N_det
htilde_matrix_elmt_bi_ortho_tranp(j,i) = htilde_matrix_elmt_bi_ortho(i,j)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,218 @@
! ---
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_eigval, (mo_num)]
BEGIN_DOC
!
! natorb_tc_reigvec_mo : RIGHT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_leigvec_mo : LEFT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_eigval : eigenvalues of the ground state transition matrix (equivalent of the occupation numbers). WARNINING :: can be negative !!
!
END_DOC
implicit none
integer :: i, j, k
double precision :: thr_d, thr_nd, thr_deg, accu
double precision :: accu_d, accu_nd
double precision, allocatable :: dm_tmp(:,:), fock_diag(:)
allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num))
dm_tmp(:,:) = -tc_transition_matrix(:,:,1,1)
print *, ' dm_tmp'
do i = 1, mo_num
fock_diag(i) = fock_matrix_tc_mo_tot(i,i)
write(*, '(100(F16.10,X))') -dm_tmp(:,i)
enddo
thr_d = 1.d-6
thr_nd = 1.d-6
thr_deg = 1.d-3
call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
! call non_hrmt_bieig( mo_num, dm_tmp&
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo&
! , mo_num, natorb_tc_eigval )
accu = 0.d0
do i = 1, mo_num
print*,'natorb_tc_eigval(i) = ',-natorb_tc_eigval(i)
accu += -natorb_tc_eigval(i)
enddo
print *, ' accu = ', accu
dm_tmp = 0.d0
do i = 1, mo_num
accu = 0.d0
do k = 1, mo_num
accu += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,i)
enddo
accu = 1.d0/dsqrt(dabs(accu))
natorb_tc_reigvec_mo(:,i) *= accu
natorb_tc_leigvec_mo(:,i) *= accu
do j = 1, mo_num
do k = 1, mo_num
dm_tmp(j,i) += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,j)
enddo
enddo
enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, mo_num
accu_d += dm_tmp(i,i)
!write(*,'(100(F16.10,X))')dm_tmp(:,i)
do j = 1, mo_num
if(i==j)cycle
accu_nd += dabs(dm_tmp(j,i))
enddo
enddo
print *, ' Trace of the overlap between TC natural orbitals ', accu_d
print *, ' L1 norm of extra diagonal elements of overlap matrix ', accu_nd
deallocate(dm_tmp, fock_diag)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, fock_diag_sorted_r_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_l_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_v_natorb, (mo_num)]
implicit none
integer :: i,j,k
integer, allocatable :: iorder(:)
double precision, allocatable :: fock_diag(:)
print *, ' Diagonal elements of the Fock matrix before '
do i = 1, mo_num
write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo
allocate(fock_diag(mo_num))
fock_diag = 0.d0
do i = 1, mo_num
fock_diag(i) = 0.d0
do j = 1, mo_num
do k = 1, mo_num
fock_diag(i) += natorb_tc_leigvec_mo(k,i) * Fock_matrix_tc_mo_tot(k,j) * natorb_tc_reigvec_mo(j,i)
enddo
enddo
enddo
allocate(iorder(mo_num))
do i = 1, mo_num
iorder(i) = i
enddo
call dsort(fock_diag, iorder, mo_num)
print *, ' Diagonal elements of the Fock matrix after '
do i = 1, mo_num
write(*,*) i, fock_diag(i)
enddo
deallocate(fock_diag)
do i = 1, mo_num
fock_diag_sorted_v_natorb(i) = natorb_tc_eigval(iorder(i))
do j = 1, mo_num
fock_diag_sorted_r_natorb(j,i) = natorb_tc_reigvec_mo(j,iorder(i))
fock_diag_sorted_l_natorb(j,i) = natorb_tc_leigvec_mo(j,iorder(i))
enddo
enddo
deallocate(iorder)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_natorb_tc_eigvec_ao, (mo_num, mo_num) ]
BEGIN_DOC
! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP
!
! THE OVERLAP SHOULD BE THE SAME AS overlap_natorb_tc_eigvec_mo
END_DOC
implicit none
integer :: i, j, k, q, p
double precision :: accu, accu_d
double precision, allocatable :: tmp(:,:)
! ! MO_R x R
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1) &
, fock_diag_sorted_r_natorb, size(fock_diag_sorted_r_natorb, 1) &
, 0.d0, natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) )
!
! MO_L x L
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1) &
, fock_diag_sorted_l_natorb, size(fock_diag_sorted_l_natorb, 1) &
, 0.d0, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1) )
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
deallocate( tmp )
! ---
double precision :: norm
do i = 1, mo_num
norm = 1.d0/dsqrt(dabs(overlap_natorb_tc_eigvec_ao(i,i)))
do j = 1, mo_num
natorb_tc_reigvec_ao(j,i) *= norm
natorb_tc_leigvec_ao(j,i) *= norm
enddo
enddo
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
deallocate( tmp )
accu_d = 0.d0
accu = 0.d0
do i = 1, mo_num
accu_d += overlap_natorb_tc_eigvec_ao(i,i)
do j = 1, mo_num
if(i==j)cycle
accu += dabs(overlap_natorb_tc_eigvec_ao(j,i))
enddo
enddo
print*,'Trace of the overlap_natorb_tc_eigvec_ao = ',accu_d
print*,'mo_num = ',mo_num
print*,'L1 norm of extra diagonal elements of overlap matrix ',accu
accu = accu / dble(mo_num**2)
END_PROVIDER

View File

@ -0,0 +1,80 @@
BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix(p,h,istate,jstate) = <Chi_istate| a^\dagger_p a_h |Phi_jstate>
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
integer :: i,j,istate,jstate,m,n,p,h
double precision :: phase
integer, allocatable :: occ(:,:)
integer :: n_occ_ab(2),degree,exc(0:2,2,2)
allocate(occ(N_int*bit_kind_size,2))
tc_transition_matrix = 0.d0
do istate = 1, N_states
do jstate = 1, N_states
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree.gt.1)then
cycle
else if (degree == 0)then
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
do p = 1, n_occ_ab(1) ! browsing the alpha electrons
m = occ(p,1)
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
enddo
do p = 1, n_occ_ab(2) ! browsing the beta electrons
m = occ(p,1)
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
enddo
else
call get_single_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Single alpha
h = exc(1,1,1) ! hole in psi_det(1,1,j)
p = exc(1,2,1) ! particle in psi_det(1,1,j)
else
! Single beta
h = exc(1,1,2) ! hole in psi_det(1,1,j)
p = exc(1,2,2) ! particle in psi_det(1,1,j)
endif
tc_transition_matrix(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
endif
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_bi_ortho_dipole, (3,N_states)]
implicit none
integer :: i,j,istate,m
double precision :: nuclei_part(3)
tc_bi_ortho_dipole = 0.d0
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
tc_bi_ortho_dipole(1,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_x(j,i)
tc_bi_ortho_dipole(2,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_y(j,i)
tc_bi_ortho_dipole(3,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_z(j,i)
enddo
enddo
enddo
nuclei_part = 0.d0
do m = 1, 3
do i = 1,nucl_num
nuclei_part(m) += nucl_charge(i) * nucl_coord(i,m)
enddo
enddo
!
do istate = 1, N_states
do m = 1, 3
tc_bi_ortho_dipole(m,istate) += nuclei_part(m)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,70 @@
! ---
program tc_som
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, ' starting ...'
print *, ' do not forget to do tc-scf first'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf
print *, ' mu = ', mu_erf
PROVIDE j1b_type
print *, ' j1b_type = ', j1b_type
print *, j1b_pen
read_wf = .true.
touch read_wf
call main()
end
! ---
subroutine main()
implicit none
integer :: i, i_HF, degree
double precision :: hmono_1, htwoe_1, hthree_1, htot_1
double precision :: hmono_2, htwoe_2, hthree_2, htot_2
double precision :: U_SOM
PROVIDE N_int N_det
do i = 1, N_det
call get_excitation_degree(HF_bitmask, psi_det(1,1,i), degree, N_int)
if(degree == 0) then
i_HF = i
exit
endif
enddo
print *, ' HF determinants:', i_HF
print *, ' N_det :', N_det
U_SOM = 0.d0
do i = 1, N_det
if(i == i_HF) cycle
call htilde_mu_mat_bi_ortho(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
U_SOM += htot_1 * htot_2
enddo
U_SOM = 0.5d0 * U_SOM
print *, ' U_SOM = ', U_SOM
return
end subroutine main
! ---

View File

@ -0,0 +1,51 @@
program test_natorb
implicit none
BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine
! call test
end
subroutine routine
implicit none
double precision, allocatable :: fock_diag(:),eigval(:),leigvec(:,:),reigvec(:,:),mat_ref(:,:)
allocate(eigval(mo_num),leigvec(mo_num,mo_num),reigvec(mo_num,mo_num),fock_diag(mo_num),mat_ref(mo_num, mo_num))
double precision, allocatable :: eigval_ref(:),leigvec_ref(:,:),reigvec_ref(:,:)
allocate(eigval_ref(mo_num),leigvec_ref(mo_num,mo_num),reigvec_ref(mo_num,mo_num))
double precision :: thr_deg
integer :: i,n_real,j
print*,'fock_matrix'
do i = 1, mo_num
fock_diag(i) = Fock_matrix_mo(i,i)
print*,i,fock_diag(i)
enddo
thr_deg = 1.d-6
mat_ref = -one_e_dm_mo
print*,'diagonalization by block'
call diag_mat_per_fock_degen(fock_diag,mat_ref,mo_num,thr_deg,leigvec,reigvec,eigval)
call non_hrmt_bieig( mo_num, mat_ref&
, leigvec_ref, reigvec_ref&
, n_real, eigval_ref)
print*,'TEST ***********************************'
double precision :: accu_l, accu_r
do i = 1, mo_num
accu_l = 0.d0
accu_r = 0.d0
do j = 1, mo_num
accu_r += reigvec_ref(j,i) * reigvec(j,i)
accu_l += leigvec_ref(j,i) * leigvec(j,i)
enddo
print*,i
write(*,'(I3,X,100(F16.10,X))')i,eigval(i),eigval_ref(i),accu_l,accu_r
enddo
end

View File

@ -0,0 +1,131 @@
program test_normal_order
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call provide_all_three_ints_bi_ortho
call test
end
subroutine test
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer :: h1,h2,p1,p2,s1,s2,i_ok,degree,Ne(2)
integer :: exc(0:2,2,2)
integer(bit_kind), allocatable :: det_i(:,:)
double precision :: hmono,htwoe,hthree,htilde_ij,accu,phase,normal
integer, allocatable :: occ(:,:)
allocate( occ(N_int*bit_kind_size,2) )
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
allocate(det_i(N_int,2))
s1 = 1
s2 = 2
accu = 0.d0
do h1 = 1, elec_beta_num
do p1 = elec_alpha_num+1, mo_num
do h2 = 1, elec_beta_num
do p2 = elec_beta_num+1, mo_num
det_i = ref_bitmask
call do_single_excitation(det_i,h1,p1,s1,i_ok)
call do_single_excitation(det_i,h2,p2,s2,i_ok)
call htilde_mu_mat_bi_ortho(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
hthree *= phase
! !normal = normal_two_body_bi_orth_ab(p2,h2,p1,h1)
call three_comp_two_e_elem(det_i,h1,h2,p1,p2,s1,s2,normal)
! normal = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
accu += dabs(hthree-normal)
enddo
enddo
enddo
enddo
print*,'accu opposite spin = ',accu
stop
! p2=6
! p1=5
! h2=2
! h1=1
s1 = 1
s2 = 1
accu = 0.d0
do h1 = 1, elec_alpha_num
do p1 = elec_alpha_num+1, mo_num
do p2 = p1+1, mo_num
do h2 = h1+1, elec_alpha_num
det_i = ref_bitmask
call do_single_excitation(det_i,h1,p1,s1,i_ok)
if(i_ok.ne.1)cycle
call do_single_excitation(det_i,h2,p2,s2,i_ok)
if(i_ok.ne.1)cycle
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
integer :: hh1, pp1, hh2, pp2, ss1, ss2
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
hthree *= phase
! normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
normal = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
if(dabs(hthree).lt.1.d-10)cycle
if(dabs(hthree-normal).gt.1.d-10)then
print*,pp2,pp1,hh2,hh1
print*,p2,p1,h2,h1
print*,hthree,normal,dabs(hthree-normal)
stop
endif
! print*,hthree,normal,dabs(hthree-normal)
accu += dabs(hthree-normal)
enddo
enddo
enddo
enddo
print*,'accu same spin alpha = ',accu
s1 = 2
s2 = 2
accu = 0.d0
do h1 = 1, elec_beta_num
do p1 = elec_beta_num+1, mo_num
do p2 = p1+1, mo_num
do h2 = h1+1, elec_beta_num
det_i = ref_bitmask
call do_single_excitation(det_i,h1,p1,s1,i_ok)
if(i_ok.ne.1)cycle
call do_single_excitation(det_i,h2,p2,s2,i_ok)
if(i_ok.ne.1)cycle
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
hthree *= phase
! normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
normal = eff_2_e_from_3_e_bb(p2,p1,h2,h1)
if(dabs(hthree).lt.1.d-10)cycle
if(dabs(hthree-normal).gt.1.d-10)then
print*,pp2,pp1,hh2,hh1
print*,p2,p1,h2,h1
print*,hthree,normal,dabs(hthree-normal)
stop
endif
! print*,hthree,normal,dabs(hthree-normal)
accu += dabs(hthree-normal)
enddo
enddo
enddo
enddo
print*,'accu same spin beta = ',accu
end

View File

@ -0,0 +1,254 @@
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test_h_u0
! call test_slater_tc_opt
! call timing_tot
! call timing_diag
! call timing_single
! call timing_double
end
subroutine test_h_u0
implicit none
double precision, allocatable :: v_0_ref(:),v_0_new(:),u_0(:), v_0_ref_dagger(:)
double precision :: accu
logical :: do_right
integer :: i
allocate(v_0_new(N_det),v_0_ref(N_det),u_0(N_det),v_0_ref_dagger(N_det))
do_right = .True.
do i = 1, N_det
u_0(i) = psi_r_coef_bi_ortho(i,1)
enddo
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
call htc_bi_ortho_calc_tdav (v_0_ref,u_0,N_states,N_det)
print*,'difference right '
accu = 0.d0
do i = 1, N_det
print*,dabs(v_0_new(i) - v_0_ref(i)),v_0_new(i) , v_0_ref(i)
accu += dabs(v_0_new(i) - v_0_ref(i))
enddo
print*,'accu = ',accu
do_right = .False.
v_0_new = 0.d0
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
call htcdag_bi_ortho_calc_tdav(v_0_ref_dagger,u_0,N_states,N_det, do_right)
print*,'difference left'
accu = 0.d0
do i = 1, N_det
print*,dabs(v_0_new(i) - v_0_ref_dagger(i)),v_0_new(i) , v_0_ref_dagger(i)
accu += dabs(v_0_new(i) - v_0_ref_dagger(i))
enddo
print*,'accu = ',accu
end
subroutine test_slater_tc_opt
implicit none
integer :: i,j,degree
double precision :: hmono, htwoe, htot, hthree
double precision :: hnewmono, hnewtwoe, hnewthree, hnewtot
double precision :: accu_d ,i_count, accu
accu = 0.d0
accu_d = 0.d0
i_count = 0.d0
do i = 1, N_det
do j = 1,N_det
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hnewmono, hnewtwoe, hnewthree, hnewtot)
if(dabs(htot).gt.1.d-15)then
i_count += 1.D0
accu += dabs(htot-hnewtot)
if(dabs(htot-hnewtot).gt.1.d-8.or.dabs(htot-hnewtot).gt.dabs(htot))then
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
print*,j,i,degree
call debug_det(psi_det(1,1,i),N_int)
call debug_det(psi_det(1,1,j),N_int)
print*,htot,hnewtot,dabs(htot-hnewtot)
print*,hthree,hnewthree,dabs(hthree-hnewthree)
stop
endif
endif
enddo
enddo
print*,'accu = ',accu/i_count
end
subroutine timing_tot
implicit none
integer :: i,j
double precision :: wall0, wall1
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
double precision :: hmono, htwoe, hthree, htot, i_count
integer :: degree
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall0)
i_count = 0.d0
do i = 1, N_det
do j = 1, N_det
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
i_count += 1.d0
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for old hij for total = ',wall1 - wall0
call wall_time(wall0)
i_count = 0.d0
do i = 1, N_det
do j = 1, N_det
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
i_count += 1.d0
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for new hij for total = ',wall1 - wall0
call i_H_j(psi_det(1,1,1), psi_det(1,1,2),N_int,htot)
call wall_time(wall0)
i_count = 0.d0
do i = 1, N_det
do j = 1, N_det
call i_H_j(psi_det(1,1,j), psi_det(1,1,i),N_int,htot)
i_count += 1.d0
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for new hij STANDARD = ',wall1 - wall0
end
subroutine timing_diag
implicit none
integer :: i,j
double precision :: wall0, wall1
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
double precision :: hmono, htwoe, hthree, htot, i_count
integer :: degree
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall0)
i_count = 0.d0
do i = 1, N_det
do j = i,i
i_count += 1.d0
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for old hij for diagonal= ',wall1 - wall0
call wall_time(wall0)
i_count = 0.d0
do i = 1, N_det
do j = i,i
i_count += 1.d0
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for new hij for diagonal= ',wall1 - wall0
end
subroutine timing_single
implicit none
integer :: i,j
double precision :: wall0, wall1,accu
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
double precision :: hmono, htwoe, hthree, htot, i_count
integer :: degree
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
i_count = 0.d0
accu = 0.d0
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
if(degree.ne.1)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
enddo
print*,'i_count = ',i_count
print*,'time for old hij for singles = ',accu
i_count = 0.d0
accu = 0.d0
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
if(degree.ne.1)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
enddo
print*,'i_count = ',i_count
print*,'time for new hij for singles = ',accu
end
subroutine timing_double
implicit none
integer :: i,j
double precision :: wall0, wall1,accu
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
double precision :: hmono, htwoe, hthree, htot, i_count
integer :: degree
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
i_count = 0.d0
accu = 0.d0
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
if(degree.ne.2)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
enddo
print*,'i_count = ',i_count
print*,'time for old hij for doubles = ',accu
i_count = 0.d0
accu = 0.d0
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
if(degree.ne.2)cycle
i_count += 1.d0
call wall_time(wall0)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
call wall_time(wall1)
accu += wall1 - wall0
enddo
enddo
call wall_time(wall1)
print*,'i_count = ',i_count
print*,'time for new hij for doubles = ',accu
end

View File

@ -0,0 +1,194 @@
program test_tc_fock
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_1
!call routine_2
! call routine_3()
! call test_3e
call routine_tot
end
! ---
subroutine test_3e
implicit none
double precision :: integral_aaa,integral_aab,integral_abb,integral_bbb,accu
double precision :: hmono, htwoe, hthree, htot
call htilde_mu_mat_bi_ortho(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
! call diag_htilde_three_body_ints_bi_ort(N_int, ref_bitmask, hthree)
print*,'hmono = ',hmono
print*,'htwoe = ',htwoe
print*,'hthree= ',hthree
print*,'htot = ',htot
print*,''
print*,''
print*,'TC_one= ',tc_hf_one_e_energy
print*,'TC_two= ',TC_HF_two_e_energy
print*,'TC_3e = ',diag_three_elem_hf
print*,'TC_tot= ',TC_HF_energy
print*,''
print*,''
call give_aaa_contrib(integral_aaa)
print*,'integral_aaa = ',integral_aaa
call give_aab_contrib(integral_aab)
print*,'integral_aab = ',integral_aab
call give_abb_contrib(integral_abb)
print*,'integral_abb = ',integral_abb
call give_bbb_contrib(integral_bbb)
print*,'integral_bbb = ',integral_bbb
accu = integral_aaa + integral_aab + integral_abb + integral_bbb
print*,'accu = ',accu
print*,'delta = ',hthree - accu
end
subroutine routine_3()
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i, a, i_ok, s1
double precision :: hmono, htwoe, hthree, htilde_ij
double precision :: err_ai, err_tot, ref, new
integer(bit_kind), allocatable :: det_i(:,:)
allocate(det_i(N_int,2))
err_tot = 0.d0
do s1 = 1, 2
det_i = ref_bitmask
call debug_det(det_i, N_int)
print*, ' HF det'
call debug_det(det_i, N_int)
do i = 1, elec_num_tab(s1)
do a = elec_num_tab(s1)+1, mo_num ! virtual
det_i = ref_bitmask
call do_single_excitation(det_i, i, a, s1, i_ok)
if(i_ok == -1) then
print*, 'PB !!'
print*, i, a
stop
endif
print*, ' excited det'
call debug_det(det_i, N_int)
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
if(dabs(hthree).lt.1.d-10)cycle
ref = hthree
if(s1 == 1)then
new = fock_a_tot_3e_bi_orth(a,i)
else if(s1 == 2)then
new = fock_b_tot_3e_bi_orth(a,i)
endif
err_ai = dabs(dabs(ref) - dabs(new))
if(err_ai .gt. 1d-7) then
print*,'s1 = ',s1
print*, ' warning on', i, a
print*, ref,new,err_ai
endif
print*, ref,new,err_ai
err_tot += err_ai
write(22, *) htilde_ij
enddo
enddo
enddo
print *, ' err_tot = ', err_tot
deallocate(det_i)
end subroutine routine_3
! ---
subroutine routine_tot()
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i, a, i_ok, s1,other_spin(2)
double precision :: hmono, htwoe, hthree, htilde_ij
double precision :: err_ai, err_tot, ref, new
integer(bit_kind), allocatable :: det_i(:,:)
allocate(det_i(N_int,2))
other_spin(1) = 2
other_spin(2) = 1
err_tot = 0.d0
! do s1 = 1, 2
s1 = 2
det_i = ref_bitmask
call debug_det(det_i, N_int)
print*, ' HF det'
call debug_det(det_i, N_int)
! do i = 1, elec_num_tab(s1)
! do a = elec_num_tab(s1)+1, mo_num ! virtual
do i = 1, elec_beta_num
do a = elec_beta_num+1, elec_alpha_num! virtual
! do i = elec_beta_num+1, elec_alpha_num
! do a = elec_alpha_num+1, mo_num! virtual
print*,i,a
det_i = ref_bitmask
call do_single_excitation(det_i, i, a, s1, i_ok)
if(i_ok == -1) then
print*, 'PB !!'
print*, i, a
stop
endif
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
print*,htilde_ij
if(dabs(htilde_ij).lt.1.d-10)cycle
print*, ' excited det'
call debug_det(det_i, N_int)
if(s1 == 1)then
new = Fock_matrix_tc_mo_alpha(a,i)
else
new = Fock_matrix_tc_mo_beta(a,i)
endif
ref = htilde_ij
! if(s1 == 1)then
! new = fock_a_tot_3e_bi_orth(a,i)
! else if(s1 == 2)then
! new = fock_b_tot_3e_bi_orth(a,i)
! endif
err_ai = dabs(dabs(ref) - dabs(new))
if(err_ai .gt. 1d-7) then
print*,'s1 = ',s1
print*, ' warning on', i, a
print*, ref,new,err_ai
endif
print*, ref,new,err_ai
err_tot += err_ai
write(22, *) htilde_ij
enddo
enddo
! enddo
print *, ' err_tot = ', err_tot
deallocate(det_i)
end subroutine routine_3

View File

@ -0,0 +1,770 @@
subroutine u_0_H_tc_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze, do_right)
use bitmasks
implicit none
BEGIN_DOC
! Computes $E_0 = \frac{\langle u_0 | H_TC | u_0 \rangle}{\langle u_0 | u_0 \rangle}$
!
! n : number of determinants
!
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
END_DOC
integer, intent(in) :: n,Nint, N_st, sze
logical, intent(in) :: do_right
double precision, intent(out) :: e_0(N_st)
double precision, intent(inout) :: u_0(sze,N_st)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision, allocatable :: v_0(:,:), u_1(:,:)
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
integer :: i,j, istate
allocate (v_0(n,N_st),u_1(n,N_st))
u_1(:,:) = 0.d0
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
call H_tc_u_0_nstates_openmp(v_0,u_1,N_st,n, do_right)
u_0(1:n,1:N_st) = u_1(1:n,1:N_st)
deallocate(u_1)
double precision :: norm
!$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED)
do i=1,N_st
norm = u_dot_u(u_0(1,i),n)
if (norm /= 0.d0) then
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) / dsqrt(norm)
else
e_0(i) = 0.d0
endif
enddo
!$OMP END PARALLEL DO
deallocate (v_0)
end
subroutine H_tc_u_0_opt(v_0,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_0 = H | u_0\rangle$.
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
logical :: do_right
do_right = .True.
call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
end
subroutine H_tc_dagger_u_0_opt(v_0,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_0 = H | u_0\rangle$.
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
logical :: do_right
do_right = .False.
call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
end
subroutine H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_0 = H | u_0\rangle$.
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
!
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
logical, intent(in) :: do_right
integer :: k
double precision, allocatable :: u_t(:,:), v_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det),v_t(N_st,N_det))
provide mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e
provide ref_tc_energy_tot fock_op_2_e_tc_closed_shell
provide eff_2_e_from_3_e_ab eff_2_e_from_3_e_aa eff_2_e_from_3_e_bb
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
v_t = 0.d0
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,1,N_det,0,1, do_right)
deallocate(u_t)
call dtranspose( &
v_t, &
size(v_t, 1), &
v_0, &
size(v_0, 1), &
N_st, N_det)
deallocate(v_t)
do k=1,N_st
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,istart,iend,ishift,istep, do_right)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t\rangle$
!
! Default should be 1,N_det,0,1
!
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
logical, intent(in) :: do_right
double precision, intent(out) :: v_t(N_st,sze)
PROVIDE ref_bitmask_energy N_int
select case (N_int)
case (1)
call H_tc_u_0_nstates_openmp_work_1(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
case (2)
call H_tc_u_0_nstates_openmp_work_2(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
case (3)
call H_tc_u_0_nstates_openmp_work_3(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
case (4)
call H_tc_u_0_nstates_openmp_work_4(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
case default
call H_tc_u_0_nstates_openmp_work_N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
end select
end
BEGIN_TEMPLATE
subroutine H_tc_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
use bitmasks
implicit none
BEGIN_DOC
! Computes $v_t = H | u_t \\rangle$
!
! Default should be 1,N_det,0,1
!
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
logical, intent(in) :: do_right
double precision, intent(out) :: v_t(N_st,sze)
double precision :: hij
integer :: i,j,k,l,kk
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
logical :: compute_singles
integer*8 :: last_found, left, right, right_max
double precision :: rss, mem, ratio
double precision, allocatable :: utl(:,:)
integer, parameter :: block_size=128
logical :: u_is_sparse
! call resident_memory(rss)
! mem = dble(singles_beta_csc_size) / 1024.d0**3
!
! compute_singles = (mem+rss > qp_max_mem)
!
! if (.not.compute_singles) then
! provide singles_beta_csc
! endif
compute_singles=.True.
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) &
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
!$OMP psi_bilinear_matrix_columns, &
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
!$OMP psi_bilinear_matrix_transp_rows, &
!$OMP psi_bilinear_matrix_transp_columns, &
!$OMP psi_bilinear_matrix_transp_order, N_st, &
!$OMP psi_bilinear_matrix_order_transp_reverse, &
!$OMP psi_bilinear_matrix_columns_loc, &
!$OMP psi_bilinear_matrix_transp_rows_loc, &
!$OMP istart, iend, istep, irp_here, v_t, &
!$OMP ishift, idx0, u_t, maxab, compute_singles, &
!$OMP singles_alpha_csc,singles_alpha_csc_idx, &
!$OMP singles_beta_csc,singles_beta_csc_idx) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
!$OMP buffer, doubles, n_doubles, umax, &
!$OMP tmp_det2, hij, idx, l, kcol_prev,hmono, htwoe, hthree, &
!$OMP singles_a, n_singles_a, singles_b, ratio, &
!$OMP n_singles_b, k8, last_found,left,right,right_max)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab), utl(N_st,block_size))
kcol_prev=-1
! Check if u has multiple zeros
kk=1 ! Avoid division by zero
!$OMP DO
do k=1,N_det
umax = 0.d0
do l=1,N_st
umax = max(umax, dabs(u_t(l,k)))
enddo
if (umax < 1.d-20) then
!$OMP ATOMIC
kk = kk+1
endif
enddo
!$OMP END DO
u_is_sparse = N_det / kk < 20 ! 5%
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!$OMP DO SCHEDULE(guided,64)
do k_a=istart+ishift,iend,istep ! Loop over all determinants (/!\ not in psidet order)
krow = psi_bilinear_matrix_rows(k_a) ! Index of alpha part of determinant k_a
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a) ! Index of beta part of determinant k_a
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
if (kcol /= kcol_prev) then
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (compute_singles) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
else
n_singles_b = 0
!DIR$ LOOP COUNT avg(1000)
do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1
n_singles_b = n_singles_b+1
singles_b(n_singles_b) = singles_beta_csc(k8)
enddo
endif
endif
kcol_prev = kcol
! -> Here, tmp_det is determinant k_a
! Loop over singly excited beta columns
! -------------------------------------
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
! tmp_det2 is a single excitation of tmp_det in the beta spin
! the alpha part is not defined yet
!---
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
! rows : | 1 2 3 4 | 1 3 4 6 | .... | 1 2 4 5 |
! cols : | 1 1 1 1 | 2 2 2 2 | .... | 8 8 8 8 |
! index : | 1 2 3 4 | 5 6 7 8 | .... | 58 59 60 61 |
! ^ ^
! | |
! l_a N_det
! l_a is the index in the big vector os size Ndet of the position of the first element of column lcol
! Below we identify all the determinants with the same beta part
!DIR$ UNROLL(8)
!DIR$ LOOP COUNT avg(50000)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
! Get all single excitations from tmp_det(1,1) to buffer(1,?)
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
double precision :: umax
!DIR$ LOOP COUNT avg(1000)
do k = 1,n_singles_a,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (k+kk > n_singles_a) exit
l_a = singles_a(k+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! double alpha-beta
if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
else
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
endif
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(guided,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
!DIR$ LOOP COUNT avg(200000)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_a,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_singles_a) exit
l_a = singles_a(i+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij)
if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
else
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
endif
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
!DIR$ LOOP COUNT avg(50000)
do i=1,n_doubles,block_size
umax = 0.d0
! Prefetch u_t(:,l_a)
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_a = doubles(i+kk)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
! call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
else
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
endif
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
!DIR$ LOOP COUNT avg(200000)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
!DIR$ LOOP COUNT avg(1000)
do i=1,n_singles_b,block_size
umax = 0.d0
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_singles_b) exit
l_b = singles_b(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
! call i_H_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij)
if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
else
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
endif
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Compute Hij for all beta doubles
! ----------------------------------
!DIR$ LOOP COUNT avg(50000)
do i=1,n_doubles,block_size
umax = 0.d0
if (u_is_sparse) then
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
do l=1,N_st
utl(l,kk+1) = u_t(l,l_a)
umax = max(umax, dabs(utl(l,kk+1)))
enddo
enddo
else
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
ASSERT (l_b <= N_det)
ASSERT (l_a <= N_det)
utl(:,kk+1) = u_t(:,l_a)
enddo
umax = 1.d0
endif
if (umax < 1.d-20) cycle
do kk=0,block_size-1
if (i+kk > n_doubles) exit
l_b = doubles(i+kk)
l_a = psi_bilinear_matrix_transp_order(l_b)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
! call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
else
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
endif
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
enddo
enddo
enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
if (u_is_sparse) then
umax = 0.d0
do l=1,N_st
umax = max(umax, dabs(u_t(l,k_a)))
enddo
else
umax = 1.d0
endif
if (umax < 1.d-20) cycle
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem
double precision :: hmono, htwoe, hthree
! hij = diag_H_mat_elem(tmp_det,$N_int)
call diag_htilde_mu_mat_fock_bi_ortho ($N_int, tmp_det, hmono, htwoe, hthree, hij)
!DIR$ LOOP COUNT AVG(4)
do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
enddo
end do
!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx, utl)
!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -1649,3 +1649,185 @@ subroutine restore_symmetry(m,n,A,LDA,thresh)
enddo
end
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
implicit none
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
double precision, intent(in) :: A(A_ldim,n)
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
character*1 :: JOBVL, JOBVR, BALANC, SENSE
integer :: i, j
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
double precision :: ABNRM
integer, allocatable :: iorder(:), IWORK(:)
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
double precision, allocatable :: energy_loc(:), V_loc(:,:)
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
do i = 1, n
do j = 1, n
Atmp(j,i) = A(j,i)
enddo
enddo
JOBVL = "N" ! computes the left eigenvectors
JOBVR = "V" ! computes the right eigenvectors
BALANC = "B" ! Diagonal scaling and Permutation for optimization
SENSE = "V" ! Determines which reciprocal condition numbers are computed
lda = n
ldvr = n
ldvl = 1
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
LWORK = -1 ! to ask for the optimal size of WORK
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
deallocate(WORK)
allocate(WORK(LWORK))
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
, n, Atmp, lda &
, WR, WI &
, VL, ldvl, VR, ldvr &
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'dgeevx failed !!', INFO
stop
endif
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
deallocate( VL, Atmp )
allocate( energy_loc(n), V_loc(n,n) )
energy_loc = 0.d0
V_loc = 0.d0
i = 1
do while(i .le. n)
! print*, i, WR(i), WI(i)
if( dabs(WI(i)) .gt. 1e-7 ) then
print*, ' Found an imaginary component to eigenvalue'
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
enddo
energy_loc(i+1) = WI(i)
do j = 1, n
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
enddo
i = i + 2
else
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = VR(j,i)
enddo
i = i + 1
endif
enddo
deallocate(WR, WI, VR)
! ordering
! do j = 1, n
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
allocate( iorder(n) )
do i = 1, n
iorder(i) = i
enddo
call dsort(energy_loc, iorder, n)
do i = 1, n
energy(i) = energy_loc(i)
do j = 1, n
V(j,i) = V_loc(j,iorder(i))
enddo
enddo
deallocate(iorder)
! do j = 1, n
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
deallocate(V_loc, energy_loc)
end subroutine diag_nonsym_right
! ---
! Taken from GammCor thanks to Michal Hapka :-)
subroutine pivoted_cholesky( A, rank, tol, ndim, U)
!
! A = U**T * U
!
! matrix A is destroyed inside this subroutine
! Cholesky vectors are stored in U
! dimension of U: U(1:rank, 1:n)
! U is allocated inside this subroutine
! rank is the number of Cholesky vectors depending on tol
!
integer :: ndim
integer, intent(inout) :: rank
double precision, dimension(ndim, ndim), intent(inout) :: A
double precision, dimension(ndim, rank), intent(out) :: U
double precision, intent(in) :: tol
integer, dimension(:), allocatable :: piv
double precision, dimension(:), allocatable :: work
character, parameter :: uplo = "U"
integer :: N, LDA
integer :: info
integer :: k, l, rank0
external :: dpstrf
rank0 = rank
N = size(A, dim=1)
LDA = N
allocate(piv(N))
allocate(work(2*N))
call dpstrf(uplo, N, A, LDA, piv, rank, tol, work, info)
if (rank > rank0) then
print *, 'Bug: rank > rank0 in pivoted cholesky. Increase rank before calling'
stop
end if
do k = 1, N
A(k+1:, k) = 0.00D+0
end do
! TODO: It should be possible to use only one vector of size (1:rank) as a buffer
! to do the swapping in-place
U = 0.00D+0
do k = 1, N
l = piv(k)
U(l, :) = A(1:rank, k)
end do
end subroutine pivoted_cholesky