mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 04:22:32 +01:00
Moved CASSCF into qp_plugins_scemama
This commit is contained in:
parent
cbc33201a2
commit
e33bd5060d
@ -1,49 +0,0 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
source $QP_ROOT/tests/bats/common.bats.sh
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
|
||||
|
||||
function run_stoch() {
|
||||
thresh=$2
|
||||
test_exe casscf || skip
|
||||
qp set perturbation do_pt2 True
|
||||
qp set determinants n_det_max $3
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 4
|
||||
qp run casscf | tee casscf.out
|
||||
energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
|
||||
eq $energy1 $1 $thresh
|
||||
}
|
||||
|
||||
@test "F2" { # 18.0198s
|
||||
rm -rf f2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf
|
||||
qp set_file f2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]"
|
||||
run_stoch -198.773366970 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2" { # 18.0198s
|
||||
rm -rf n2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf
|
||||
qp set_file n2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
run_stoch -109.0961643162 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2_stretched" {
|
||||
rm -rf n2_stretched_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf
|
||||
qp set_file n2_stretched_casscf
|
||||
qp run scf | tee scf.out
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
qp set electrons elec_alpha_num 7
|
||||
qp set electrons elec_beta_num 7
|
||||
run_stoch -108.7860471300 1.e-4 100000
|
||||
#
|
||||
|
||||
}
|
||||
|
@ -1,31 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated Selected |FCI| energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated |FCI| energy + |PT2|
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[cisd_guess]
|
||||
type: logical
|
||||
doc: If true, the CASSCF starts with a CISD wave function
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[state_following_casscf]
|
||||
type: logical
|
||||
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[level_shift_casscf]
|
||||
type: Positive_float
|
||||
doc: Energy shift on the virtual MOs to improve SCF convergence
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.005
|
||||
|
@ -1 +0,0 @@
|
||||
the CASCF can be obtained if a proper guess is given to the WF part
|
@ -1,4 +0,0 @@
|
||||
cipsi
|
||||
selectors_full
|
||||
generators_cas
|
||||
two_body_rdm
|
@ -1,5 +0,0 @@
|
||||
======
|
||||
casscf
|
||||
======
|
||||
|
||||
|CASSCF| program with the CIPSI algorithm.
|
@ -1,6 +0,0 @@
|
||||
! -*- F90 -*-
|
||||
BEGIN_PROVIDER [logical, bavard]
|
||||
! bavard=.true.
|
||||
bavard=.false.
|
||||
END_PROVIDER
|
||||
|
@ -1,155 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
bielec_PQxx(:,:,:,:) = 0.d0
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j)
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
double precision, allocatable :: integrals_array(:,:)
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
bielec_PxxQ = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
allocate(integrals_array(mo_num,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! (ip|qj)
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(integrals_array)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,p,t,u,v
|
||||
double precision, external :: mo_two_e_integral
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,k,p,t,u,v) &
|
||||
!$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI)
|
||||
do p=1,mo_num
|
||||
do j=1,n_act_orb
|
||||
u=list_act(j)
|
||||
do k=1,n_act_orb
|
||||
v=list_act(k)
|
||||
do i=1,n_act_orb
|
||||
t=list_act(i)
|
||||
bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
@ -1,369 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! integral (pq|xx) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l)
|
||||
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate (f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integral (px|xq) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
|
||||
|
||||
|
||||
allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), &
|
||||
d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate(f,d)
|
||||
|
||||
allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), &
|
||||
d(mo_num,n_core_inact_act_orb,n_act_orb) )
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate(f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integrals (tu|vp) in the basis of natural MOs
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,n_act_orb,mo_num), &
|
||||
d(n_act_orb,n_act_orb,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,mo_num
|
||||
bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(p,j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielecCI_no(p,j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(j,p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,p,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,l,list_act(p))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(d,f)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,58 +0,0 @@
|
||||
program casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
call reorder_orbitals_for_casscf
|
||||
no_vvvv_integrals = .True.
|
||||
touch no_vvvv_integrals
|
||||
pt2_max = 0.02
|
||||
SOFT_TOUCH no_vvvv_integrals pt2_max
|
||||
call run_stochastic_cipsi
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
double precision :: energy_old, energy
|
||||
logical :: converged,state_following_casscf_save
|
||||
integer :: iteration
|
||||
converged = .False.
|
||||
|
||||
energy = 0.d0
|
||||
mo_label = "MCSCF"
|
||||
iteration = 1
|
||||
state_following_casscf_save = state_following_casscf
|
||||
state_following_casscf = .True.
|
||||
touch state_following_casscf
|
||||
do while (.not.converged)
|
||||
call run_stochastic_cipsi
|
||||
energy_old = energy
|
||||
energy = eone+etwo+ecore
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration')
|
||||
call write_double(6,energy,'CAS-SCF energy')
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement')
|
||||
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
pt2_max = dabs(energy_improvement / pt2_relative_error)
|
||||
|
||||
mo_coef = NewOrbs
|
||||
mo_occ = occnum
|
||||
call save_mos
|
||||
iteration += 1
|
||||
N_det = max(N_det/2 ,N_states)
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
read_wf = .True.
|
||||
call clear_mo_map
|
||||
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
|
||||
if(iteration .gt. 3)then
|
||||
state_following_casscf = state_following_casscf_save
|
||||
touch state_following_casscf
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end
|
@ -1,12 +0,0 @@
|
||||
BEGIN_PROVIDER [ logical, do_only_1h1p ]
|
||||
&BEGIN_PROVIDER [ logical, do_only_cas ]
|
||||
&BEGIN_PROVIDER [ logical, do_ddci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! In the CAS case, all those are always false except do_only_cas
|
||||
END_DOC
|
||||
do_only_cas = .True.
|
||||
do_only_1h1p = .False.
|
||||
do_ddci = .False.
|
||||
END_PROVIDER
|
||||
|
@ -1,63 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! the first-order density matrix in the basis of the starting MOs.
|
||||
! matrix is state averaged.
|
||||
END_DOC
|
||||
integer :: t,u
|
||||
|
||||
do u=1,n_act_orb
|
||||
do t=1,n_act_orb
|
||||
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
|
||||
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
|
||||
BEGIN_DOC
|
||||
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
|
||||
! The values are state averaged
|
||||
!
|
||||
! We use the spin-free generators of mono-excitations
|
||||
! E_pq destroys q and creates p
|
||||
! D_pq = <0|E_pq|0> = D_qp
|
||||
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
!
|
||||
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,u,v,x
|
||||
integer :: tt,uu,vv,xx
|
||||
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
|
||||
integer :: ierr
|
||||
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
|
||||
integer :: nu1,nu2,nu11,nu12,nu21,nu22
|
||||
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
|
||||
real*8 :: cI_mu(N_states),term
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing the 2 body RDM on the active part'
|
||||
endif
|
||||
|
||||
P0tuvx= 0.d0
|
||||
do istate=1,N_states
|
||||
do x = 1, n_act_orb
|
||||
do v = 1, n_act_orb
|
||||
do u = 1, n_act_orb
|
||||
do t = 1, n_act_orb
|
||||
! 1 1 2 2 1 2 1 2
|
||||
P0tuvx(t,u,v,x) = state_av_act_2_rdm_spin_trace_mo(t,v,u,x)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -1,125 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
|
||||
ispin,phase,ierr)
|
||||
BEGIN_DOC
|
||||
! we create the mono-excitation, and determine, if possible,
|
||||
! the phase and the number in the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
|
||||
integer(bit_kind), allocatable :: keytmp(:,:)
|
||||
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
|
||||
real*8 :: phase
|
||||
logical :: found
|
||||
allocate(keytmp(N_int,2))
|
||||
|
||||
nu=-1
|
||||
phase=1.D0
|
||||
ierr=0
|
||||
call det_copy(key1,key2,N_int)
|
||||
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
|
||||
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
|
||||
if (ierr.eq.1) then
|
||||
! excitation is possible
|
||||
! get the phase
|
||||
call get_single_excitation(key1,key2,exc,phase,N_int)
|
||||
! get the number in the list
|
||||
found=.false.
|
||||
nu=0
|
||||
|
||||
!TODO BOTTLENECK
|
||||
do while (.not.found)
|
||||
nu+=1
|
||||
if (nu.gt.N_det) then
|
||||
! the determinant is possible, but not in the list
|
||||
found=.true.
|
||||
nu=-1
|
||||
else
|
||||
call det_extract(keytmp,nu,N_int)
|
||||
integer :: i,ii
|
||||
found=.true.
|
||||
do ii=1,2
|
||||
do i=1,N_int
|
||||
if (keytmp(i,ii).ne.key2(i,ii)) then
|
||||
found=.false.
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! we found the new string, the phase, and possibly the number in the list
|
||||
!
|
||||
end subroutine do_signed_mono_excitation
|
||||
|
||||
subroutine det_extract(key,nu,Nint)
|
||||
BEGIN_DOC
|
||||
! extract a determinant from the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,nu,Nint
|
||||
integer(bit_kind) :: key(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key(i,ispin)=psi_det(i,ispin,nu)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_extract
|
||||
|
||||
subroutine det_copy(key1,key2,Nint)
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
BEGIN_DOC
|
||||
! copy a determinant from key1 to key2
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,Nint
|
||||
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key2(i,ispin)=key1(i,ispin)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_copy
|
||||
|
||||
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
|
||||
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
|
||||
BEGIN_DOC
|
||||
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
|
||||
! we may create two determinants as result
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
|
||||
integer(bit_kind) :: key_out2(N_int,2)
|
||||
integer :: ihole,ipart,ierr,jerr,nu1,nu2
|
||||
integer :: ispin
|
||||
real*8 :: phase1,phase2
|
||||
|
||||
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
|
||||
! call print_det(key_in,N_int)
|
||||
|
||||
! spin alpha
|
||||
ispin=1
|
||||
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
|
||||
,ipart,ispin,phase1,ierr)
|
||||
! if (ierr.eq.1) then
|
||||
! write(6,*) ' 1 result is ',nu1,phase1
|
||||
! call print_det(key_out1,N_int)
|
||||
! end if
|
||||
! spin beta
|
||||
ispin=2
|
||||
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
|
||||
,ipart,ispin,phase2,jerr)
|
||||
! if (jerr.eq.1) then
|
||||
! write(6,*) ' 2 result is ',nu2,phase2
|
||||
! call print_det(key_out2,N_int)
|
||||
! end if
|
||||
|
||||
end subroutine do_spinfree_mono_excitation
|
||||
|
@ -1,3 +0,0 @@
|
||||
subroutine driver_optorb
|
||||
implicit none
|
||||
end
|
@ -1,51 +0,0 @@
|
||||
program print_2rdm
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! get the active part of the bielectronic energy on a given wave function.
|
||||
!
|
||||
! useful to test the active part of the spin trace 2 rdms
|
||||
END_DOC
|
||||
!no_vvvv_integrals = .True.
|
||||
read_wf = .True.
|
||||
!touch read_wf no_vvvv_integrals
|
||||
!call routine
|
||||
!call routine_bis
|
||||
call print_grad
|
||||
end
|
||||
|
||||
subroutine print_grad
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(gradvec2(i)).gt.1.d-5)then
|
||||
print*,''
|
||||
print*,i,gradvec2(i),excit(:,i)
|
||||
endif
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
integer :: i,j,k,l
|
||||
integer :: ii,jj,kk,ll
|
||||
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
|
||||
thr = 1.d-10
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
do ll = 1, n_act_orb
|
||||
l = list_act(ll)
|
||||
do kk = 1, n_act_orb
|
||||
k = list_act(kk)
|
||||
do jj = 1, n_act_orb
|
||||
j = list_act(jj)
|
||||
do ii = 1, n_act_orb
|
||||
i = list_act(ii)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
accu(1) += state_av_act_2_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu(1)
|
||||
|
||||
end
|
@ -1,74 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
|
||||
! each determinant I we determine the string E_pq |I> (alpha and beta
|
||||
! separately) and generate <Psi|H E_pq |I>
|
||||
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
|
||||
! gradient
|
||||
! E_pq = a^+_pa_q + a^+_Pa_Q
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ii,tt,aa,indx,ihole,ipart,istate
|
||||
real*8 :: res
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
call calc_grad_elem(ihole,ipart,res)
|
||||
gradvec_old(indx)=res
|
||||
end do
|
||||
|
||||
real*8 :: norm_grad
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad+=gradvec_old(indx)*gradvec_old(indx)
|
||||
end do
|
||||
norm_grad=sqrt(norm_grad)
|
||||
if (bavard) then
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
|
||||
write(6,*)
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_grad_elem(ihole,ipart,res)
|
||||
BEGIN_DOC
|
||||
! eq 18 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_mu_ex(N_int,2))
|
||||
|
||||
res=0.D0
|
||||
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation on it
|
||||
call det_copy(det_mu,det_mu_ex,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
|
||||
,ihole,ipart,ispin,phase,ierr)
|
||||
if (ierr.eq.1) then
|
||||
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged gradient
|
||||
res*=2.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_grad_elem
|
||||
|
@ -1,171 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, nMonoEx ]
|
||||
BEGIN_DOC
|
||||
! Number of single excitations
|
||||
END_DOC
|
||||
implicit none
|
||||
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
||||
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! a list of the orbitals involved in the excitation
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,t,a,ii,tt,aa,indx
|
||||
indx=0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=t
|
||||
excit_class(indx)='c-a'
|
||||
end do
|
||||
end do
|
||||
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='c-v'
|
||||
end do
|
||||
end do
|
||||
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=t
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='a-v'
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' Filled the table of the Monoexcitations '
|
||||
do indx=1,nMonoEx
|
||||
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
|
||||
,excit(2,indx),' ',excit_class(indx)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
|
||||
! matrices and integrals; Siegbahn et al, Phys Scr 1980
|
||||
! eqs 14 a,b,c
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx
|
||||
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
|
||||
real*8 :: norm_grad
|
||||
|
||||
indx=0
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_it(i,t)
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ia(i,a)
|
||||
end do
|
||||
end do
|
||||
|
||||
do t=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ta(t,a)
|
||||
end do
|
||||
end do
|
||||
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad+=gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
norm_grad=sqrt(norm_grad)
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
|
||||
write(6,*)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function gradvec_it(i,t)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> active
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t
|
||||
|
||||
integer :: ii,tt,v,vv,x,y
|
||||
integer :: x3,y3
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
|
||||
gradvec_it-=occnum(tt)*Fipq(ii,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
do y=1,n_act_orb
|
||||
y3=y+n_core_inact_orb
|
||||
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_it*=2.D0
|
||||
end function gradvec_it
|
||||
|
||||
real*8 function gradvec_ia(i,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,ii,aa
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
|
||||
gradvec_ia*=2.D0
|
||||
|
||||
end function gradvec_ia
|
||||
|
||||
real*8 function gradvec_ta(t,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient active -> virtual
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,tt,aa,v,vv,x,y
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
gradvec_ta=0.D0
|
||||
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_ta*=2.D0
|
||||
|
||||
end function gradvec_ta
|
||||
|
@ -1,656 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
|
||||
! determinant per determinant, as for the gradient
|
||||
!
|
||||
! we assume that we have natural active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: indx,ihole,ipart
|
||||
integer :: jndx,jhole,jpart
|
||||
character*3 :: iexc,jexc
|
||||
real*8 :: res
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
do indx=1,nMonoEx
|
||||
do jndx=1,nMonoEx
|
||||
hessmat(indx,jndx)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
iexc=excit_class(indx)
|
||||
do jndx=indx,nMonoEx
|
||||
jhole=excit(1,jndx)
|
||||
jpart=excit(2,jndx)
|
||||
jexc=excit_class(jndx)
|
||||
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
hessmat(indx,jndx)=res
|
||||
hessmat(jndx,indx)=res
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
BEGIN_DOC
|
||||
! eq 19 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
|
||||
! average over all states is performed.
|
||||
! no transition between states.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,ispin,mu,istate
|
||||
integer :: jhole,jpart,jspin
|
||||
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pq(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
|
||||
real*8 :: i_H_j_element
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_nu(N_int,2))
|
||||
allocate(det_mu_pq(N_int,2))
|
||||
allocate(det_mu_rs(N_int,2))
|
||||
allocate(det_nu_rs(N_int,2))
|
||||
allocate(det_mu_pqrs(N_int,2))
|
||||
allocate(det_mu_rspq(N_int,2))
|
||||
integer :: mu_pq_possible
|
||||
integer :: mu_rs_possible
|
||||
integer :: nu_rs_possible
|
||||
integer :: mu_pqrs_possible
|
||||
integer :: mu_rspq_possible
|
||||
|
||||
res=0.D0
|
||||
|
||||
! the terms <0|E E H |0>
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation pq on it
|
||||
call det_copy(det_mu,det_mu_pq,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
|
||||
,ihole,ipart,ispin,phase,mu_pq_possible)
|
||||
if (mu_pq_possible.eq.1) then
|
||||
! possible, but not necessarily in the list
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
! try the de-excitation with opposite sign
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
|
||||
phase2=-phase2
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
! exchange the notion of pq and rs
|
||||
! do the monoexcitation rs on the initial determinant
|
||||
call det_copy(det_mu,det_mu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
|
||||
,jhole,jpart,ispin,phase2,mu_rs_possible)
|
||||
if (mu_rs_possible.eq.1) then
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ihole,ipart,jspin,phase3,mu_rspq_possible)
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
! we may try the de-excitation, with opposite sign
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ipart,ihole,jspin,phase3,mu_rspq_possible)
|
||||
phase3=-phase3
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! the operator E H E, we have to do a double loop over the determinants
|
||||
! we still have the determinant mu_pq and the phase in memory
|
||||
if (mu_pq_possible.eq.1) then
|
||||
do nu=1,N_det
|
||||
call det_extract(det_nu,nu,N_int)
|
||||
do jspin=1,2
|
||||
call det_copy(det_nu,det_nu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
|
||||
,jhole,jpart,jspin,phase2,nu_rs_possible)
|
||||
! excitation possible ?
|
||||
if (nu_rs_possible.eq.1) then
|
||||
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
|
||||
do istate=1,N_states
|
||||
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
|
||||
*psi_coef(nu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged Hessian
|
||||
res*=1.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_hess_elem
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! explicit hessian matrix from density matrices and integrals
|
||||
! of course, this will be used for a direct Davidson procedure later
|
||||
! we will not store the matrix in real life
|
||||
! formulas are broken down as functions for the 6 classes of matrix elements
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat2 '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat2(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat2(indx,jndx) = hessmat2(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function hessmat_itju(i,t,j,u)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> active
|
||||
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
|
||||
!
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
|
||||
real*8 :: term,t2
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
if (i.eq.j) then
|
||||
if (t.eq.u) then
|
||||
! diagonal element
|
||||
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
|
||||
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
|
||||
-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
else
|
||||
! it/iu, t != u
|
||||
uu=list_act(u)
|
||||
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=occnum(tt)*Fipq(uu,tt)
|
||||
term-=(occnum(tt)+occnum(uu)) &
|
||||
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! it/ju
|
||||
jj=list_core_inact(j)
|
||||
uu=list_act(u)
|
||||
if (t.eq.u) then
|
||||
term=occnum(tt)*Fipq(ii,jj)
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=(occnum(tt)+occnum(uu))* &
|
||||
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(uu,tt,i,j))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,j,xx))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_itju=term
|
||||
|
||||
end function hessmat_itju
|
||||
|
||||
real*8 function hessmat_itja(i,t,j,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
|
||||
real*8 :: term
|
||||
|
||||
! it/ja
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
jj=list_core_inact(j)
|
||||
aa=list_virt(a)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
if (i.eq.j) then
|
||||
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
|
||||
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itja=term
|
||||
|
||||
end function hessmat_itja
|
||||
|
||||
real*8 function hessmat_itua(i,t,u,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
aa=list_virt(a)
|
||||
if (t.eq.u) then
|
||||
term=-occnum(tt)*Fipq(aa,ii)
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
|
||||
+bielec_pxxq_no(aa,t3,u3,ii))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
integer :: x3
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
|
||||
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
|
||||
*bielec_pqxx_no(aa,xx,v3,i))
|
||||
end do
|
||||
end do
|
||||
if (t.eq.u) then
|
||||
term+=Fipq(aa,ii)+Fapq(aa,ii)
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itua=term
|
||||
|
||||
end function hessmat_itua
|
||||
|
||||
real*8 function hessmat_iajb(i,a,j,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,j,b,ii,aa,jj,bb
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
if (i.eq.j) then
|
||||
if (a.eq.b) then
|
||||
! ia/ia
|
||||
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ia/ib
|
||||
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
|
||||
end if
|
||||
else
|
||||
! ia/jb
|
||||
jj=list_core_inact(j)
|
||||
bb=list_virt(b)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
|
||||
-bielec_pxxq_no(aa,j,i,bb))
|
||||
if (a.eq.b) then
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
end if
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iajb=term
|
||||
|
||||
end function hessmat_iajb
|
||||
|
||||
real*8 function hessmat_iatb(i,a,t,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
tt=list_act(t)
|
||||
bb=list_virt(b)
|
||||
t3=t+n_core_inact_orb
|
||||
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
|
||||
-bielec_pqxx_no(aa,bb,i,t3))
|
||||
if (a.eq.b) then
|
||||
term-=Fipq(tt,ii)+Fapq(tt,ii)
|
||||
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iatb=term
|
||||
|
||||
end function hessmat_iatb
|
||||
|
||||
real*8 function hessmat_taub(t,a,u,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for act->virt,act->virt
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
|
||||
integer :: v3,x3
|
||||
real*8 :: term,t1,t2,t3
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
if (t == u) then
|
||||
if (a == b) then
|
||||
! ta/ta
|
||||
t1=occnum(tt)*Fipq(aa,aa)
|
||||
t2=0.D0
|
||||
t3=0.D0
|
||||
t1-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(aa,x3,v3,aa))
|
||||
do y=1,n_act_orb
|
||||
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
term=t1+t2+t3
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ta/tb b/=a
|
||||
term=occnum(tt)*Fipq(aa,bb)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! ta/ub t/=u
|
||||
uu=list_act(u)
|
||||
bb=list_virt(b)
|
||||
term=0.D0
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
if (a.eq.b) then
|
||||
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
|
||||
do v=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
|
||||
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_taub=term
|
||||
|
||||
end function hessmat_taub
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! the diagonal of the Hessian, needed for the Davidson procedure
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx,indx_shift
|
||||
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,t,a,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
hessdiag(indx)=hessmat_itju(i,t,i,t)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_iajb(i,a,i,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_taub(t,a,t,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
@ -1,80 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the inactive Fock matrix, in molecular orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)=one_ints_no(p,q)
|
||||
end do
|
||||
end do
|
||||
|
||||
! the inactive Fock matrix
|
||||
do k=1,n_core_inact_orb
|
||||
kk=list_core_inact(k)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the active active Fock matrix, in molecular orbitals
|
||||
! we create them in MOs, quite expensive
|
||||
!
|
||||
! for an implementation in AOs we need first the natural orbitals
|
||||
! for forming an active density matrix in AOs
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
Fapq = 0.d0
|
||||
|
||||
! the active Fock matrix, D0tu is diagonal
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fapq(p,q)+=occnum(tt) &
|
||||
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the effective Fock matrix over MOs'
|
||||
write(6,*)
|
||||
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the active Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,231 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO occupation numbers
|
||||
END_DOC
|
||||
|
||||
integer :: i
|
||||
occnum=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
occnum(list_core_inact(i))=2.D0
|
||||
end do
|
||||
|
||||
do i=1,n_act_orb
|
||||
occnum(list_act(i))=occ_act(i)
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' occupation numbers '
|
||||
do i=1,mo_num
|
||||
write(6,*) i,occnum(i)
|
||||
end do
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
|
||||
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Natural orbitals of CI
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
double precision :: Vt(n_act_orb,n_act_orb)
|
||||
|
||||
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||||
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' found occupation numbers as '
|
||||
do i=1,n_act_orb
|
||||
write(6,*) i,occ_act(i)
|
||||
end do
|
||||
|
||||
integer :: nmx
|
||||
real*8 :: xmx
|
||||
do i=1,n_act_orb
|
||||
! largest element of the eigenvector should be positive
|
||||
xmx=0.D0
|
||||
nmx=0
|
||||
do j=1,n_act_orb
|
||||
if (abs(natOrbsCI(j,i)).gt.xmx) then
|
||||
nmx=j
|
||||
xmx=abs(natOrbsCI(j,i))
|
||||
end if
|
||||
end do
|
||||
xmx=sign(1.D0,natOrbsCI(nmx,i))
|
||||
do j=1,n_act_orb
|
||||
natOrbsCI(j,i)*=xmx
|
||||
end do
|
||||
|
||||
write(6,*) ' Eigenvector No ',i
|
||||
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 4-index transformation of 2part matrices
|
||||
END_DOC
|
||||
integer :: i,j,k,l,p,q
|
||||
real*8 :: d(n_act_orb)
|
||||
|
||||
! index per index
|
||||
! first quarter
|
||||
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
|
||||
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(p,j,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 2nd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,p,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 3rd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,p,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 4th quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,l,p)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transformed one-e integrals
|
||||
END_DOC
|
||||
integer :: i,j, p, q
|
||||
real*8 :: d(n_act_orb)
|
||||
one_ints_no(:,:)=mo_one_e_integrals(:,:)
|
||||
|
||||
! 1st half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(list_act(p),j)=d(p)
|
||||
end do
|
||||
end do
|
||||
|
||||
! 2nd half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(j,list_act(p))=d(p)
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Rotation matrix from current MOs to the CI natural MOs
|
||||
END_DOC
|
||||
integer :: p,q
|
||||
|
||||
NatOrbsCI_mos(:,:) = 0.d0
|
||||
|
||||
do q = 1,mo_num
|
||||
NatOrbsCI_mos(q,q) = 1.d0
|
||||
enddo
|
||||
|
||||
do q = 1,n_act_orb
|
||||
do p = 1,n_act_orb
|
||||
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! FCI natural orbitals
|
||||
END_DOC
|
||||
|
||||
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1))
|
||||
END_PROVIDER
|
||||
|
@ -1,221 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Single-excitation matrix
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
|
||||
do i=1,nMonoEx+1
|
||||
do j=1,nMonoEx+1
|
||||
SXmatrix(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
||||
end do
|
||||
end do
|
||||
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) += level_shift_casscf
|
||||
enddo
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/eigenvalues of the single-excitation matrix
|
||||
END_DOC
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
if(nmonoex.gt.0)then
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
||||
endif
|
||||
write(6,*)
|
||||
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, energy_improvement]
|
||||
implicit none
|
||||
if(state_following_casscf)then
|
||||
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
|
||||
else
|
||||
energy_improvement = SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
|
||||
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
best_overlap_casscf = 0.D0
|
||||
best_vector_ovrlp_casscf = -1000
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (abs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
||||
best_overlap_casscf=abs(SXeigenvec(1,i))
|
||||
best_vector_ovrlp_casscf = i
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
if(best_vector_ovrlp_casscf.lt.0)then
|
||||
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
|
||||
endif
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
||||
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
|
||||
write(6,*) ' weight of the 1st element ',c0
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Best eigenvector of the single-excitation matrix
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
do i=1,nMonoEx+1
|
||||
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updated orbitals
|
||||
END_DOC
|
||||
integer :: i,j,ialph
|
||||
|
||||
if(state_following_casscf)then
|
||||
print*,'Using the state following casscf '
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
else
|
||||
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
|
||||
print*,'Taking the lowest root for the CASSCF'
|
||||
print*,'!!! SWAPPING MOS !!!!!!'
|
||||
level_shift_casscf *= 2.D0
|
||||
level_shift_casscf = min(level_shift_casscf,0.5d0)
|
||||
print*,'level_shift_casscf = ',level_shift_casscf
|
||||
NewOrbs = switch_mo_coef
|
||||
!mo_coef = switch_mo_coef
|
||||
!soft_touch mo_coef
|
||||
!call save_mos_no_occ
|
||||
!stop
|
||||
else
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
endif
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Orbital rotation matrix
|
||||
END_DOC
|
||||
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
||||
logical :: converged
|
||||
|
||||
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
||||
real*8 :: Tmat(mo_num,mo_num)
|
||||
real*8 :: f
|
||||
|
||||
! the orbital rotation matrix T
|
||||
Tmat(:,:)=0.D0
|
||||
indx=1
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx+=1
|
||||
Tmat(ii,tt)= SXvector(indx)
|
||||
Tmat(tt,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(ii,aa)= SXvector(indx)
|
||||
Tmat(aa,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(tt,aa)= SXvector(indx)
|
||||
Tmat(aa,tt)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the exponential
|
||||
|
||||
Tpotmat(:,:)=0.D0
|
||||
Umat(:,:) =0.D0
|
||||
do i=1,mo_num
|
||||
Tpotmat(i,i)=1.D0
|
||||
Umat(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
Tmat, size(Tmat,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -1,70 +0,0 @@
|
||||
subroutine reorder_orbitals_for_casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual
|
||||
END_DOC
|
||||
integer :: i,j,iorb
|
||||
integer, allocatable :: iorder(:),array(:)
|
||||
allocate(iorder(mo_num),array(mo_num))
|
||||
do i = 1, n_core_orb
|
||||
iorb = list_core(i)
|
||||
array(iorb) = i
|
||||
enddo
|
||||
|
||||
do i = 1, n_inact_orb
|
||||
iorb = list_inact(i)
|
||||
array(iorb) = mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
array(iorb) = 2 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_virt_orb
|
||||
iorb = list_virt(i)
|
||||
array(iorb) = 3 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call isort(array,iorder,mo_num)
|
||||
double precision, allocatable :: mo_coef_new(:,:)
|
||||
allocate(mo_coef_new(ao_num,mo_num))
|
||||
do i = 1, mo_num
|
||||
mo_coef_new(:,i) = mo_coef(:,iorder(i))
|
||||
enddo
|
||||
mo_coef = mo_coef_new
|
||||
touch mo_coef
|
||||
|
||||
list_core_reverse = 0
|
||||
do i = 1, n_core_orb
|
||||
list_core(i) = i
|
||||
list_core_reverse(i) = i
|
||||
mo_class(i) = "Core"
|
||||
enddo
|
||||
|
||||
list_inact_reverse = 0
|
||||
do i = 1, n_inact_orb
|
||||
list_inact(i) = i + n_core_orb
|
||||
list_inact_reverse(i+n_core_orb) = i
|
||||
mo_class(i+n_core_orb) = "Inactive"
|
||||
enddo
|
||||
|
||||
list_act_reverse = 0
|
||||
do i = 1, n_act_orb
|
||||
list_act(i) = n_core_inact_orb + i
|
||||
list_act_reverse(n_core_inact_orb + i) = i
|
||||
mo_class(n_core_inact_orb + i) = "Active"
|
||||
enddo
|
||||
|
||||
list_virt_reverse = 0
|
||||
do i = 1, n_virt_orb
|
||||
list_virt(i) = n_core_inact_orb + n_act_orb + i
|
||||
list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i
|
||||
mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual"
|
||||
enddo
|
||||
touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse
|
||||
|
||||
end
|
@ -1,9 +0,0 @@
|
||||
subroutine save_energy(E,pt2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Saves the energy in |EZFIO|.
|
||||
END_DOC
|
||||
double precision, intent(in) :: E(N_states), pt2(N_states)
|
||||
call ezfio_set_casscf_energy(E(1:N_states))
|
||||
call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states))
|
||||
end
|
@ -1,207 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
|
||||
!
|
||||
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
|
||||
END_DOC
|
||||
super_ci_dm = 0.d0
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a,aorb,b,borb
|
||||
integer :: t,torb,v,vorb,u,uorb,x,xorb
|
||||
double precision :: c0,ci
|
||||
c0 = SXeigenvec(1,1)
|
||||
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
! loop over the core/inact
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
|
||||
! loop over the core/inact
|
||||
do j = 1, n_core_inact_orb
|
||||
jorb = list_core_inact(j)
|
||||
! loop over the virtual
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
|
||||
enddo
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
! thrid term of the B3.a
|
||||
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
|
||||
enddo
|
||||
do u = 1, n_act_orb
|
||||
uorb = list_act(u)
|
||||
|
||||
! second term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! third term of equation B3.d
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do b = 1, n_virt_orb
|
||||
borb= list_virt(b)
|
||||
|
||||
! First term of equation B3.f
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
|
||||
enddo
|
||||
|
||||
! Second term of equation B3.f
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
|
||||
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
|
||||
implicit none
|
||||
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
|
||||
END_DOC
|
||||
integer :: a,aorb,i,iorb
|
||||
integer :: x,xorb,v,vorb
|
||||
mat_tmp_dm_super_ci = 0.d0
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
|
||||
enddo
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
|
||||
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a, aorb,t, torb
|
||||
double precision :: sqrt2
|
||||
|
||||
sqrt2 = 1.d0/dsqrt(2.d0)
|
||||
do i = 1, nMonoEx
|
||||
iorb = excit(1,i)
|
||||
jorb = excit(2,i)
|
||||
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
|
||||
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
|
||||
enddo
|
||||
|
||||
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
|
||||
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,132 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i=2,nMonoEx+1
|
||||
SXvector_lowest(i-1)=SXeigenvec(i,1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, thresh_overlap_switch]
|
||||
implicit none
|
||||
thresh_overlap_switch = 0.5d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, n_max_overlap]
|
||||
&BEGIN_PROVIDER [integer, dim_n_max_overlap]
|
||||
implicit none
|
||||
double precision, allocatable :: vec_tmp(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate(vec_tmp(nMonoEx),iorder(nMonoEx))
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
iorder(i) = i
|
||||
vec_tmp(i) = -dabs(SXvector_lowest(i))
|
||||
enddo
|
||||
call dsort(vec_tmp,iorder,nMonoEx)
|
||||
n_max_overlap = 0
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then
|
||||
n_max_overlap += 1
|
||||
max_overlap(n_max_overlap) = iorder(i)
|
||||
endif
|
||||
enddo
|
||||
dim_n_max_overlap = max(1,n_max_overlap)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, n_orb_swap ]
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: i,imono,iorb,jorb,j
|
||||
n_orb_swap = 0
|
||||
do i = 1, n_max_overlap
|
||||
imono = max_overlap(i)
|
||||
iorb = excit(1,imono)
|
||||
jorb = excit(2,imono)
|
||||
if (excit_class(imono) == "c-a" .and.hessmat2(imono,imono).gt.0.d0)then ! core --> active rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = iorb ! core
|
||||
orb_swap(2,n_orb_swap) = jorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
else if (excit_class(imono) == "a-v" .and.hessmat2(imono,imono).gt.0.d0)then ! active --> virtual rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = jorb ! virtual
|
||||
orb_swap(2,n_orb_swap) = iorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
endif
|
||||
enddo
|
||||
|
||||
integer,allocatable :: orb_swap_tmp(:,:)
|
||||
allocate(orb_swap_tmp(2,dim_n_max_overlap))
|
||||
do i = 1, n_orb_swap
|
||||
orb_swap_tmp(1,i) = orb_swap(1,i)
|
||||
orb_swap_tmp(2,i) = orb_swap(2,i)
|
||||
enddo
|
||||
|
||||
integer(bit_kind), allocatable :: det_i(:),det_j(:)
|
||||
allocate(det_i(N_int),det_j(N_int))
|
||||
logical, allocatable :: good_orb_rot(:)
|
||||
allocate(good_orb_rot(n_orb_swap))
|
||||
integer, allocatable :: index_orb_swap_tmp(:)
|
||||
allocate(index_orb_swap_tmp(dim_n_max_overlap))
|
||||
index_orb_swap_tmp = index_orb_swap
|
||||
good_orb_rot = .True.
|
||||
integer :: icount,k
|
||||
do i = 1, n_orb_swap
|
||||
if(.not.good_orb_rot(i))cycle
|
||||
det_i = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,i),det_i,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,i),det_i,N_int)
|
||||
do j = i+1, n_orb_swap
|
||||
det_j = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,j),det_j,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,j),det_j,N_int)
|
||||
icount = 0
|
||||
do k = 1, N_int
|
||||
icount += popcnt(ior(det_i(k),det_j(k)))
|
||||
enddo
|
||||
if (icount.ne.4)then
|
||||
good_orb_rot(i) = .False.
|
||||
good_orb_rot(j) = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
icount = n_orb_swap
|
||||
n_orb_swap = 0
|
||||
do i = 1, icount
|
||||
if(good_orb_rot(i))then
|
||||
n_orb_swap += 1
|
||||
index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i)
|
||||
orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i)
|
||||
orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i)
|
||||
endif
|
||||
enddo
|
||||
|
||||
if(n_orb_swap.gt.0)then
|
||||
print*,'n_orb_swap = ',n_orb_swap
|
||||
endif
|
||||
do i = 1, n_orb_swap
|
||||
print*,'imono = ',index_orb_swap(i)
|
||||
print*,orb_swap(1,i),'-->',orb_swap(2,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
switch_mo_coef = NatOrbsFCI
|
||||
do i = 1, n_orb_swap
|
||||
iorb = orb_swap(1,i)
|
||||
jorb = orb_swap(2,i)
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb)
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -1,29 +0,0 @@
|
||||
program test_pert_2rdm
|
||||
implicit none
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
!call get_pert_2rdm
|
||||
integer :: i,j,k,l,ii,jj,kk,ll
|
||||
double precision :: accu , get_two_e_integral, integral
|
||||
accu = 0.d0
|
||||
print*,'n_orb_pert_rdm = ',n_orb_pert_rdm
|
||||
do ii = 1, n_orb_pert_rdm
|
||||
i = list_orb_pert_rdm(ii)
|
||||
do jj = 1, n_orb_pert_rdm
|
||||
j = list_orb_pert_rdm(jj)
|
||||
do kk = 1, n_orb_pert_rdm
|
||||
k= list_orb_pert_rdm(kk)
|
||||
do ll = 1, n_orb_pert_rdm
|
||||
l = list_orb_pert_rdm(ll)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
! if(dabs(pert_2rdm_provider(ii,jj,kk,ll) * integral).gt.1.d-12)then
|
||||
! print*,i,j,k,l
|
||||
! print*,pert_2rdm_provider(ii,jj,kk,ll) * integral,pert_2rdm_provider(ii,jj,kk,ll), pert_2rdm_provider(ii,jj,kk,ll), integral
|
||||
! endif
|
||||
accu += pert_2rdm_provider(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu
|
||||
end
|
@ -1,101 +0,0 @@
|
||||
BEGIN_PROVIDER [real*8, etwo]
|
||||
&BEGIN_PROVIDER [real*8, eone]
|
||||
&BEGIN_PROVIDER [real*8, eone_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_ter]
|
||||
&BEGIN_PROVIDER [real*8, ecore]
|
||||
&BEGIN_PROVIDER [real*8, ecore_bis]
|
||||
implicit none
|
||||
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
|
||||
real*8 :: e_one_all,e_two_all
|
||||
e_one_all=0.D0
|
||||
e_two_all=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do v=1,n_act_orb
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
ecore =nuclear_repulsion
|
||||
ecore_bis=nuclear_repulsion
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
ecore +=2.D0*mo_one_e_integrals(ii,ii)
|
||||
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
|
||||
end do
|
||||
end do
|
||||
eone =0.D0
|
||||
eone_bis=0.D0
|
||||
etwo =0.D0
|
||||
etwo_bis=0.D0
|
||||
etwo_ter=0.D0
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
|
||||
-bielec_PxxQ(tt,i,i,uu))
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
real*8 :: h1,h2,h3
|
||||
h1=bielec_PQxx(tt,uu,v3,x3)
|
||||
h2=bielec_PxxQ(tt,u3,v3,xx)
|
||||
h3=bielecCI(t,u,v,xx)
|
||||
etwo +=P0tuvx(t,u,v,x)*h1
|
||||
etwo_bis+=P0tuvx(t,u,v,x)*h2
|
||||
etwo_ter+=P0tuvx(t,u,v,x)*h3
|
||||
if ((h1.ne.h2).or.(h1.ne.h3)) then
|
||||
write(6,9901) t,u,v,x,h1,h2,h3
|
||||
9901 format('aie: ',4I4,3E20.12)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user