diff --git a/src/casscf/50.casscf.bats b/src/casscf/50.casscf.bats deleted file mode 100644 index a0db725d..00000000 --- a/src/casscf/50.casscf.bats +++ /dev/null @@ -1,49 +0,0 @@ -#!/usr/bin/env bats - -source $QP_ROOT/tests/bats/common.bats.sh -source $QP_ROOT/quantum_package.rc - - -function run_stoch() { - thresh=$2 - test_exe casscf || skip - qp set perturbation do_pt2 True - qp set determinants n_det_max $3 - qp set davidson threshold_davidson 1.e-10 - qp set davidson n_states_diag 4 - qp run casscf | tee casscf.out - energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)" - eq $energy1 $1 $thresh -} - -@test "F2" { # 18.0198s - rm -rf f2_casscf - qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf - qp set_file f2_casscf - qp run scf - qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]" - run_stoch -198.773366970 1.e-4 100000 -} - -@test "N2" { # 18.0198s - rm -rf n2_casscf - qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf - qp set_file n2_casscf - qp run scf - qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]" - run_stoch -109.0961643162 1.e-4 100000 -} - -@test "N2_stretched" { - rm -rf n2_stretched_casscf - qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf - qp set_file n2_stretched_casscf - qp run scf | tee scf.out - qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]" - qp set electrons elec_alpha_num 7 - qp set electrons elec_beta_num 7 - run_stoch -108.7860471300 1.e-4 100000 -# - -} - diff --git a/src/casscf/EZFIO.cfg b/src/casscf/EZFIO.cfg deleted file mode 100644 index 4e4d3d3a..00000000 --- a/src/casscf/EZFIO.cfg +++ /dev/null @@ -1,31 +0,0 @@ -[energy] -type: double precision -doc: Calculated Selected |FCI| energy -interface: ezfio -size: (determinants.n_states) - -[energy_pt2] -type: double precision -doc: Calculated |FCI| energy + |PT2| -interface: ezfio -size: (determinants.n_states) - -[cisd_guess] -type: logical -doc: If true, the CASSCF starts with a CISD wave function -interface: ezfio,provider,ocaml -default: True - -[state_following_casscf] -type: logical -doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals -interface: ezfio,provider,ocaml -default: False - - -[level_shift_casscf] -type: Positive_float -doc: Energy shift on the virtual MOs to improve SCF convergence -interface: ezfio,provider,ocaml -default: 0.005 - diff --git a/src/casscf/MORALITY b/src/casscf/MORALITY deleted file mode 100644 index 9701a647..00000000 --- a/src/casscf/MORALITY +++ /dev/null @@ -1 +0,0 @@ -the CASCF can be obtained if a proper guess is given to the WF part diff --git a/src/casscf/NEED b/src/casscf/NEED deleted file mode 100644 index d9da718e..00000000 --- a/src/casscf/NEED +++ /dev/null @@ -1,4 +0,0 @@ -cipsi -selectors_full -generators_cas -two_body_rdm diff --git a/src/casscf/README.rst b/src/casscf/README.rst deleted file mode 100644 index 08bfd95b..00000000 --- a/src/casscf/README.rst +++ /dev/null @@ -1,5 +0,0 @@ -====== -casscf -====== - -|CASSCF| program with the CIPSI algorithm. diff --git a/src/casscf/bavard.irp.f b/src/casscf/bavard.irp.f deleted file mode 100644 index 463c3ea4..00000000 --- a/src/casscf/bavard.irp.f +++ /dev/null @@ -1,6 +0,0 @@ -! -*- F90 -*- -BEGIN_PROVIDER [logical, bavard] -! bavard=.true. - bavard=.false. -END_PROVIDER - diff --git a/src/casscf/bielec.irp.f b/src/casscf/bielec.irp.f deleted file mode 100644 index 0a44f994..00000000 --- a/src/casscf/bielec.irp.f +++ /dev/null @@ -1,155 +0,0 @@ -BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)] - BEGIN_DOC - ! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active - ! indices are unshifted orbital numbers - END_DOC - implicit none - integer :: i,j,ii,jj,p,q,i3,j3,t3,v3 - real*8 :: mo_two_e_integral - - bielec_PQxx(:,:,:,:) = 0.d0 - PROVIDE mo_two_e_integrals_in_map - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(i,ii,j,jj,i3,j3) & - !$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, & - !$OMP n_act_orb,mo_integrals_map,list_act) - - !$OMP DO - do i=1,n_core_inact_orb - ii=list_core_inact(i) - do j=i,n_core_inact_orb - jj=list_core_inact(j) - call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map) - bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j) - end do - do j=1,n_act_orb - jj=list_act(j) - j3=j+n_core_inact_orb - call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map) - bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3) - end do - end do - !$OMP END DO - - - !$OMP DO - do i=1,n_act_orb - ii=list_act(i) - i3=i+n_core_inact_orb - do j=i,n_act_orb - jj=list_act(j) - j3=j+n_core_inact_orb - call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map) - bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3) - end do - end do - !$OMP END DO - - !$OMP END PARALLEL - -END_PROVIDER - - - -BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)] - BEGIN_DOC - ! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active - ! indices are unshifted orbital numbers - END_DOC - implicit none - integer :: i,j,ii,jj,p,q,i3,j3,t3,v3 - double precision, allocatable :: integrals_array(:,:) - real*8 :: mo_two_e_integral - - PROVIDE mo_two_e_integrals_in_map - bielec_PxxQ = 0.d0 - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) & - !$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, & - !$OMP n_act_orb,mo_integrals_map,list_act) - - allocate(integrals_array(mo_num,mo_num)) - - !$OMP DO - do i=1,n_core_inact_orb - ii=list_core_inact(i) - do j=i,n_core_inact_orb - jj=list_core_inact(j) - call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map) - do q=1,mo_num - do p=1,mo_num - bielec_PxxQ(p,i,j,q)=integrals_array(p,q) - bielec_PxxQ(p,j,i,q)=integrals_array(q,p) - end do - end do - end do - do j=1,n_act_orb - jj=list_act(j) - j3=j+n_core_inact_orb - call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map) - do q=1,mo_num - do p=1,mo_num - bielec_PxxQ(p,i,j3,q)=integrals_array(p,q) - bielec_PxxQ(p,j3,i,q)=integrals_array(q,p) - end do - end do - end do - end do - !$OMP END DO - - - ! (ip|qj) - !$OMP DO - do i=1,n_act_orb - ii=list_act(i) - i3=i+n_core_inact_orb - do j=i,n_act_orb - jj=list_act(j) - j3=j+n_core_inact_orb - call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map) - do q=1,mo_num - do p=1,mo_num - bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q) - bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p) - end do - end do - end do - end do - !$OMP END DO - - deallocate(integrals_array) - !$OMP END PARALLEL - -END_PROVIDER - - -BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)] - BEGIN_DOC - ! bielecCI : integrals (tu|vp) with p arbitrary, tuv active - ! index p runs over the whole basis, t,u,v only over the active orbitals - END_DOC - implicit none - integer :: i,j,k,p,t,u,v - double precision, external :: mo_two_e_integral - PROVIDE mo_two_e_integrals_in_map - - !$OMP PARALLEL DO DEFAULT(NONE) & - !$OMP PRIVATE(i,j,k,p,t,u,v) & - !$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI) - do p=1,mo_num - do j=1,n_act_orb - u=list_act(j) - do k=1,n_act_orb - v=list_act(k) - do i=1,n_act_orb - t=list_act(i) - bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p) - end do - end do - end do - end do - !$OMP END PARALLEL DO - -END_PROVIDER diff --git a/src/casscf/bielec_natorb.irp.f b/src/casscf/bielec_natorb.irp.f deleted file mode 100644 index 9968530c..00000000 --- a/src/casscf/bielec_natorb.irp.f +++ /dev/null @@ -1,369 +0,0 @@ - BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)] - BEGIN_DOC - ! integral (pq|xx) in the basis of natural MOs - ! indices are unshifted orbital numbers - END_DOC - implicit none - integer :: i,j,k,l,t,u,p,q - double precision, allocatable :: f(:,:,:), d(:,:,:) - - - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(j,k,l,p,d,f) & - !$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, & - !$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI) - - allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), & - d(n_act_orb,mo_num,n_core_inact_act_orb)) - - !$OMP DO - do l=1,n_core_inact_act_orb - bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l) - - do k=1,n_core_inact_act_orb - do j=1,mo_num - do p=1,n_act_orb - f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l) - end do - end do - end do - call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, & - natorbsCI, size(natorbsCI,1), & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do k=1,n_core_inact_act_orb - do j=1,mo_num - do p=1,n_act_orb - bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k) - end do - end do - - do j=1,mo_num - do p=1,n_act_orb - f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l) - end do - end do - end do - call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, & - natorbsCI, n_act_orb, & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do k=1,n_core_inact_act_orb - do p=1,n_act_orb - do j=1,mo_num - bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k) - end do - end do - end do - end do - !$OMP END DO NOWAIT - - deallocate (f,d) - - allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb)) - - !$OMP DO - do l=1,n_core_inact_act_orb - - do p=1,n_act_orb - do k=1,mo_num - do j=1,mo_num - f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l) - end do - end do - end do - call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, & - f, mo_num*mo_num, & - natorbsCI, n_act_orb, & - 0.d0, & - d, mo_num*mo_num) - do p=1,n_act_orb - do k=1,mo_num - do j=1,mo_num - bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p) - end do - end do - end do - end do - !$OMP END DO NOWAIT - - !$OMP BARRIER - - !$OMP DO - do l=1,n_core_inact_act_orb - do p=1,n_act_orb - do k=1,mo_num - do j=1,mo_num - f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p) - end do - end do - end do - call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, & - f, mo_num*mo_num, & - natorbsCI, n_act_orb, & - 0.d0, & - d, mo_num*mo_num) - do p=1,n_act_orb - do k=1,mo_num - do j=1,mo_num - bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p) - end do - end do - end do - end do - !$OMP END DO - - deallocate (f,d) - !$OMP END PARALLEL - -END_PROVIDER - - - -BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)] - BEGIN_DOC - ! integral (px|xq) in the basis of natural MOs - ! indices are unshifted orbital numbers - END_DOC - implicit none - integer :: i,j,k,l,t,u,p,q - double precision, allocatable :: f(:,:,:), d(:,:,:) - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(j,k,l,p,d,f) & - !$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, & - !$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI) - - - allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), & - d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb)) - - !$OMP DO - do j=1,mo_num - bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j) - do l=1,n_core_inact_act_orb - do k=1,n_core_inact_act_orb - do p=1,n_act_orb - f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j) - end do - end do - end do - call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, & - natorbsCI, size(natorbsCI,1), & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do l=1,n_core_inact_act_orb - do k=1,n_core_inact_act_orb - do p=1,n_act_orb - bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l) - end do - end do - end do - end do - !$OMP END DO NOWAIT - - deallocate (f,d) - - allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), & - d(n_act_orb,mo_num,n_core_inact_act_orb)) - - !$OMP DO - do k=1,mo_num - do l=1,n_core_inact_act_orb - do j=1,mo_num - do p=1,n_act_orb - f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k) - end do - end do - end do - call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, & - natorbsCI, size(natorbsCI,1), & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do l=1,n_core_inact_act_orb - do j=1,mo_num - do p=1,n_act_orb - bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l) - end do - end do - end do - end do - !$OMP END DO NOWAIT - - deallocate(f,d) - - allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), & - d(mo_num,n_core_inact_act_orb,n_act_orb) ) - - !$OMP DO - do k=1,mo_num - do p=1,n_act_orb - do l=1,n_core_inact_act_orb - do j=1,mo_num - f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k) - end do - end do - end do - call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, & - f, mo_num*n_core_inact_act_orb, & - natorbsCI, size(natorbsCI,1), & - 0.d0, & - d, mo_num*n_core_inact_act_orb) - do p=1,n_act_orb - do l=1,n_core_inact_act_orb - do j=1,mo_num - bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p) - end do - end do - end do - end do - !$OMP END DO NOWAIT - - !$OMP BARRIER - - !$OMP DO - do l=1,n_core_inact_act_orb - do p=1,n_act_orb - do k=1,n_core_inact_act_orb - do j=1,mo_num - f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p) - end do - end do - end do - call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, & - f, mo_num*n_core_inact_act_orb, & - natorbsCI, size(natorbsCI,1), & - 0.d0, & - d, mo_num*n_core_inact_act_orb) - do p=1,n_act_orb - do k=1,n_core_inact_act_orb - do j=1,mo_num - bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p) - end do - end do - end do - end do - !$OMP END DO NOWAIT - deallocate(f,d) - !$OMP END PARALLEL - -END_PROVIDER - - -BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)] - BEGIN_DOC - ! integrals (tu|vp) in the basis of natural MOs - ! index p runs over the whole basis, t,u,v only over the active orbitals - END_DOC - implicit none - integer :: i,j,k,l,t,u,p,q - double precision, allocatable :: f(:,:,:), d(:,:,:) - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP PRIVATE(j,k,l,p,d,f) & - !$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, & - !$OMP bielecCI_no,bielecCI,list_act,natorbsCI) - - allocate (f(n_act_orb,n_act_orb,mo_num), & - d(n_act_orb,n_act_orb,mo_num)) - - !$OMP DO - do l=1,mo_num - bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l) - do k=1,n_act_orb - do j=1,n_act_orb - do p=1,n_act_orb - f(p,j,k)=bielecCI_no(p,j,k,l) - end do - end do - end do - call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, & - natorbsCI, size(natorbsCI,1), & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do k=1,n_act_orb - do j=1,n_act_orb - do p=1,n_act_orb - bielecCI_no(p,j,k,l)=d(p,j,k) - end do - end do - - do j=1,n_act_orb - do p=1,n_act_orb - f(p,j,k)=bielecCI_no(j,p,k,l) - end do - end do - end do - call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, & - natorbsCI, n_act_orb, & - f, n_act_orb, & - 0.d0, & - d, n_act_orb) - do k=1,n_act_orb - do p=1,n_act_orb - do j=1,n_act_orb - bielecCI_no(j,p,k,l)=d(p,j,k) - end do - end do - end do - - do p=1,n_act_orb - do k=1,n_act_orb - do j=1,n_act_orb - f(j,k,p)=bielecCI_no(j,k,p,l) - end do - end do - end do - call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, & - f, n_act_orb*n_act_orb, & - natorbsCI, n_act_orb, & - 0.d0, & - d, n_act_orb*n_act_orb) - - do p=1,n_act_orb - do k=1,n_act_orb - do j=1,n_act_orb - bielecCI_no(j,k,p,l)=d(j,k,p) - end do - end do - end do - end do - !$OMP END DO - - !$OMP DO - do l=1,n_act_orb - do p=1,n_act_orb - do k=1,n_act_orb - do j=1,n_act_orb - f(j,k,p)=bielecCI_no(j,k,l,list_act(p)) - end do - end do - end do - call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, & - f, n_act_orb*n_act_orb, & - natorbsCI, n_act_orb, & - 0.d0, & - d, n_act_orb*n_act_orb) - - do p=1,n_act_orb - do k=1,n_act_orb - do j=1,n_act_orb - bielecCI_no(j,k,l,list_act(p))=d(j,k,p) - end do - end do - end do - end do - !$OMP END DO - - deallocate(d,f) - !$OMP END PARALLEL - - -END_PROVIDER - diff --git a/src/casscf/casscf.irp.f b/src/casscf/casscf.irp.f deleted file mode 100644 index 950cfd55..00000000 --- a/src/casscf/casscf.irp.f +++ /dev/null @@ -1,58 +0,0 @@ -program casscf - implicit none - BEGIN_DOC -! TODO : Put the documentation of the program here - END_DOC - call reorder_orbitals_for_casscf - no_vvvv_integrals = .True. - touch no_vvvv_integrals - pt2_max = 0.02 - SOFT_TOUCH no_vvvv_integrals pt2_max - call run_stochastic_cipsi - call run -end - -subroutine run - implicit none - double precision :: energy_old, energy - logical :: converged,state_following_casscf_save - integer :: iteration - converged = .False. - - energy = 0.d0 - mo_label = "MCSCF" - iteration = 1 - state_following_casscf_save = state_following_casscf - state_following_casscf = .True. - touch state_following_casscf - do while (.not.converged) - call run_stochastic_cipsi - energy_old = energy - energy = eone+etwo+ecore - - call write_time(6) - call write_int(6,iteration,'CAS-SCF iteration') - call write_double(6,energy,'CAS-SCF energy') - call write_double(6,energy_improvement, 'Predicted energy improvement') - - converged = dabs(energy_improvement) < thresh_scf - pt2_max = dabs(energy_improvement / pt2_relative_error) - - mo_coef = NewOrbs - mo_occ = occnum - call save_mos - iteration += 1 - N_det = max(N_det/2 ,N_states) - psi_det = psi_det_sorted - psi_coef = psi_coef_sorted - read_wf = .True. - call clear_mo_map - SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef - if(iteration .gt. 3)then - state_following_casscf = state_following_casscf_save - touch state_following_casscf - endif - - enddo - -end diff --git a/src/casscf/class.irp.f b/src/casscf/class.irp.f deleted file mode 100644 index 7360a661..00000000 --- a/src/casscf/class.irp.f +++ /dev/null @@ -1,12 +0,0 @@ - BEGIN_PROVIDER [ logical, do_only_1h1p ] -&BEGIN_PROVIDER [ logical, do_only_cas ] -&BEGIN_PROVIDER [ logical, do_ddci ] - implicit none - BEGIN_DOC - ! In the CAS case, all those are always false except do_only_cas - END_DOC - do_only_cas = .True. - do_only_1h1p = .False. - do_ddci = .False. -END_PROVIDER - diff --git a/src/casscf/densities.irp.f b/src/casscf/densities.irp.f deleted file mode 100644 index d181d732..00000000 --- a/src/casscf/densities.irp.f +++ /dev/null @@ -1,63 +0,0 @@ -use bitmasks - -BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ] - implicit none - BEGIN_DOC - ! the first-order density matrix in the basis of the starting MOs. - ! matrix is state averaged. - END_DOC - integer :: t,u - - do u=1,n_act_orb - do t=1,n_act_orb - D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + & - one_e_dm_mo_beta_average ( list_act(t), list_act(u) ) - enddo - enddo - -END_PROVIDER - -BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ] - BEGIN_DOC - ! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS - ! The values are state averaged - ! - ! We use the spin-free generators of mono-excitations - ! E_pq destroys q and creates p - ! D_pq = <0|E_pq|0> = D_qp - ! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0> - ! - ! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0> - END_DOC - implicit none - integer :: t,u,v,x - integer :: tt,uu,vv,xx - integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart - integer :: ierr - real*8 :: phase1,phase11,phase12,phase2,phase21,phase22 - integer :: nu1,nu2,nu11,nu12,nu21,nu22 - integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22 - real*8 :: cI_mu(N_states),term - integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex - integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12 - integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22 - - if (bavard) then - write(6,*) ' providing the 2 body RDM on the active part' - endif - - P0tuvx= 0.d0 - do istate=1,N_states - do x = 1, n_act_orb - do v = 1, n_act_orb - do u = 1, n_act_orb - do t = 1, n_act_orb - ! 1 1 2 2 1 2 1 2 - P0tuvx(t,u,v,x) = state_av_act_2_rdm_spin_trace_mo(t,v,u,x) - enddo - enddo - enddo - enddo - enddo - -END_PROVIDER diff --git a/src/casscf/det_manip.irp.f b/src/casscf/det_manip.irp.f deleted file mode 100644 index d8c309a4..00000000 --- a/src/casscf/det_manip.irp.f +++ /dev/null @@ -1,125 +0,0 @@ -use bitmasks - -subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, & - ispin,phase,ierr) - BEGIN_DOC - ! we create the mono-excitation, and determine, if possible, - ! the phase and the number in the list of determinants - END_DOC - implicit none - integer(bit_kind) :: key1(N_int,2),key2(N_int,2) - integer(bit_kind), allocatable :: keytmp(:,:) - integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin - real*8 :: phase - logical :: found - allocate(keytmp(N_int,2)) - - nu=-1 - phase=1.D0 - ierr=0 - call det_copy(key1,key2,N_int) - ! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin - ! call print_det(key2,N_int) - call do_single_excitation(key2,ihole,ipart,ispin,ierr) - ! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin - ! call print_det(key2,N_int) - ! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr - if (ierr.eq.1) then - ! excitation is possible - ! get the phase - call get_single_excitation(key1,key2,exc,phase,N_int) - ! get the number in the list - found=.false. - nu=0 - - !TODO BOTTLENECK - do while (.not.found) - nu+=1 - if (nu.gt.N_det) then - ! the determinant is possible, but not in the list - found=.true. - nu=-1 - else - call det_extract(keytmp,nu,N_int) - integer :: i,ii - found=.true. - do ii=1,2 - do i=1,N_int - if (keytmp(i,ii).ne.key2(i,ii)) then - found=.false. - end if - end do - end do - end if - end do - end if - ! - ! we found the new string, the phase, and possibly the number in the list - ! -end subroutine do_signed_mono_excitation - -subroutine det_extract(key,nu,Nint) - BEGIN_DOC - ! extract a determinant from the list of determinants - END_DOC - implicit none - integer :: ispin,i,nu,Nint - integer(bit_kind) :: key(Nint,2) - do ispin=1,2 - do i=1,Nint - key(i,ispin)=psi_det(i,ispin,nu) - end do - end do -end subroutine det_extract - -subroutine det_copy(key1,key2,Nint) - use bitmasks ! you need to include the bitmasks_module.f90 features - BEGIN_DOC - ! copy a determinant from key1 to key2 - END_DOC - implicit none - integer :: ispin,i,Nint - integer(bit_kind) :: key1(Nint,2),key2(Nint,2) - do ispin=1,2 - do i=1,Nint - key2(i,ispin)=key1(i,ispin) - end do - end do -end subroutine det_copy - -subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 & - ,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr) - BEGIN_DOC - ! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q) - ! we may create two determinants as result - ! - END_DOC - implicit none - integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2) - integer(bit_kind) :: key_out2(N_int,2) - integer :: ihole,ipart,ierr,jerr,nu1,nu2 - integer :: ispin - real*8 :: phase1,phase2 - - ! write(6,*) ' applying E_',ipart,ihole,' on determinant ' - ! call print_det(key_in,N_int) - - ! spin alpha - ispin=1 - call do_signed_mono_excitation(key_in,key_out1,nu1,ihole & - ,ipart,ispin,phase1,ierr) - ! if (ierr.eq.1) then - ! write(6,*) ' 1 result is ',nu1,phase1 - ! call print_det(key_out1,N_int) - ! end if - ! spin beta - ispin=2 - call do_signed_mono_excitation(key_in,key_out2,nu2,ihole & - ,ipart,ispin,phase2,jerr) - ! if (jerr.eq.1) then - ! write(6,*) ' 2 result is ',nu2,phase2 - ! call print_det(key_out2,N_int) - ! end if - -end subroutine do_spinfree_mono_excitation - diff --git a/src/casscf/driver_optorb.irp.f b/src/casscf/driver_optorb.irp.f deleted file mode 100644 index 2e3e02dc..00000000 --- a/src/casscf/driver_optorb.irp.f +++ /dev/null @@ -1,3 +0,0 @@ -subroutine driver_optorb - implicit none -end diff --git a/src/casscf/get_energy.irp.f b/src/casscf/get_energy.irp.f deleted file mode 100644 index cfb26b59..00000000 --- a/src/casscf/get_energy.irp.f +++ /dev/null @@ -1,51 +0,0 @@ -program print_2rdm - implicit none - BEGIN_DOC - ! get the active part of the bielectronic energy on a given wave function. - ! - ! useful to test the active part of the spin trace 2 rdms - END_DOC -!no_vvvv_integrals = .True. - read_wf = .True. -!touch read_wf no_vvvv_integrals -!call routine -!call routine_bis - call print_grad -end - -subroutine print_grad - implicit none - integer :: i - do i = 1, nMonoEx - if(dabs(gradvec2(i)).gt.1.d-5)then - print*,'' - print*,i,gradvec2(i),excit(:,i) - endif - enddo -end - -subroutine routine - integer :: i,j,k,l - integer :: ii,jj,kk,ll - double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral - thr = 1.d-10 - - - accu = 0.d0 - do ll = 1, n_act_orb - l = list_act(ll) - do kk = 1, n_act_orb - k = list_act(kk) - do jj = 1, n_act_orb - j = list_act(jj) - do ii = 1, n_act_orb - i = list_act(ii) - integral = get_two_e_integral(i,j,k,l,mo_integrals_map) - accu(1) += state_av_act_2_rdm_spin_trace_mo(ii,jj,kk,ll) * integral - enddo - enddo - enddo - enddo - print*,'accu = ',accu(1) - -end diff --git a/src/casscf/grad_old.irp.f b/src/casscf/grad_old.irp.f deleted file mode 100644 index d60a60c8..00000000 --- a/src/casscf/grad_old.irp.f +++ /dev/null @@ -1,74 +0,0 @@ - -BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)] - BEGIN_DOC - ! calculate the orbital gradient by hand, i.e. for - ! each determinant I we determine the string E_pq |I> (alpha and beta - ! separately) and generate - ! sum_I c_I is then the pq component of the orbital - ! gradient - ! E_pq = a^+_pa_q + a^+_Pa_Q - END_DOC - implicit none - integer :: ii,tt,aa,indx,ihole,ipart,istate - real*8 :: res - - do indx=1,nMonoEx - ihole=excit(1,indx) - ipart=excit(2,indx) - call calc_grad_elem(ihole,ipart,res) - gradvec_old(indx)=res - end do - - real*8 :: norm_grad - norm_grad=0.d0 - do indx=1,nMonoEx - norm_grad+=gradvec_old(indx)*gradvec_old(indx) - end do - norm_grad=sqrt(norm_grad) - if (bavard) then - write(6,*) - write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad - write(6,*) - endif - - -END_PROVIDER - -subroutine calc_grad_elem(ihole,ipart,res) - BEGIN_DOC - ! eq 18 of Siegbahn et al, Physica Scripta 1980 - ! we calculate 2 , q=hole, p=particle - END_DOC - implicit none - integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate - real*8 :: res - integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:) - real*8 :: i_H_psi_array(N_states),phase - allocate(det_mu(N_int,2)) - allocate(det_mu_ex(N_int,2)) - - res=0.D0 - - do mu=1,n_det - ! get the string of the determinant - call det_extract(det_mu,mu,N_int) - do ispin=1,2 - ! do the monoexcitation on it - call det_copy(det_mu,det_mu_ex,N_int) - call do_signed_mono_excitation(det_mu,det_mu_ex,nu & - ,ihole,ipart,ispin,phase,ierr) - if (ierr.eq.1) then - call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int & - ,N_det,N_det,N_states,i_H_psi_array) - do istate=1,N_states - res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase - end do - end if - end do - end do - - ! state-averaged gradient - res*=2.D0/dble(N_states) - -end subroutine calc_grad_elem - diff --git a/src/casscf/gradient.irp.f b/src/casscf/gradient.irp.f deleted file mode 100644 index e717e822..00000000 --- a/src/casscf/gradient.irp.f +++ /dev/null @@ -1,171 +0,0 @@ -use bitmasks - -BEGIN_PROVIDER [ integer, nMonoEx ] - BEGIN_DOC - ! Number of single excitations - END_DOC - implicit none - nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb -END_PROVIDER - - BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] -&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)] - BEGIN_DOC - ! a list of the orbitals involved in the excitation - END_DOC - - implicit none - integer :: i,t,a,ii,tt,aa,indx - indx=0 - do ii=1,n_core_inact_orb - i=list_core_inact(ii) - do tt=1,n_act_orb - t=list_act(tt) - indx+=1 - excit(1,indx)=i - excit(2,indx)=t - excit_class(indx)='c-a' - end do - end do - - do ii=1,n_core_inact_orb - i=list_core_inact(ii) - do aa=1,n_virt_orb - a=list_virt(aa) - indx+=1 - excit(1,indx)=i - excit(2,indx)=a - excit_class(indx)='c-v' - end do - end do - - do tt=1,n_act_orb - t=list_act(tt) - do aa=1,n_virt_orb - a=list_virt(aa) - indx+=1 - excit(1,indx)=t - excit(2,indx)=a - excit_class(indx)='a-v' - end do - end do - - if (bavard) then - write(6,*) ' Filled the table of the Monoexcitations ' - do indx=1,nMonoEx - write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' & - ,excit(2,indx),' ',excit_class(indx) - end do - end if - -END_PROVIDER - -BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)] - BEGIN_DOC - ! calculate the orbital gradient from density - ! matrices and integrals; Siegbahn et al, Phys Scr 1980 - ! eqs 14 a,b,c - END_DOC - implicit none - integer :: i,t,a,indx - real*8 :: gradvec_it,gradvec_ia,gradvec_ta - real*8 :: norm_grad - - indx=0 - do i=1,n_core_inact_orb - do t=1,n_act_orb - indx+=1 - gradvec2(indx)=gradvec_it(i,t) - end do - end do - - do i=1,n_core_inact_orb - do a=1,n_virt_orb - indx+=1 - gradvec2(indx)=gradvec_ia(i,a) - end do - end do - - do t=1,n_act_orb - do a=1,n_virt_orb - indx+=1 - gradvec2(indx)=gradvec_ta(t,a) - end do - end do - - norm_grad=0.d0 - do indx=1,nMonoEx - norm_grad+=gradvec2(indx)*gradvec2(indx) - end do - norm_grad=sqrt(norm_grad) - write(6,*) - write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad - write(6,*) - -END_PROVIDER - -real*8 function gradvec_it(i,t) - BEGIN_DOC - ! the orbital gradient core/inactive -> active - ! we assume natural orbitals - END_DOC - implicit none - integer :: i,t - - integer :: ii,tt,v,vv,x,y - integer :: x3,y3 - - ii=list_core_inact(i) - tt=list_act(t) - gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii)) - gradvec_it-=occnum(tt)*Fipq(ii,tt) - do v=1,n_act_orb - vv=list_act(v) - do x=1,n_act_orb - x3=x+n_core_inact_orb - do y=1,n_act_orb - y3=y+n_core_inact_orb - gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3) - end do - end do - end do - gradvec_it*=2.D0 -end function gradvec_it - -real*8 function gradvec_ia(i,a) - BEGIN_DOC - ! the orbital gradient core/inactive -> virtual - END_DOC - implicit none - integer :: i,a,ii,aa - - ii=list_core_inact(i) - aa=list_virt(a) - gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii)) - gradvec_ia*=2.D0 - -end function gradvec_ia - -real*8 function gradvec_ta(t,a) - BEGIN_DOC - ! the orbital gradient active -> virtual - ! we assume natural orbitals - END_DOC - implicit none - integer :: t,a,tt,aa,v,vv,x,y - - tt=list_act(t) - aa=list_virt(a) - gradvec_ta=0.D0 - gradvec_ta+=occnum(tt)*Fipq(aa,tt) - do v=1,n_act_orb - do x=1,n_act_orb - do y=1,n_act_orb - gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa) - end do - end do - end do - gradvec_ta*=2.D0 - -end function gradvec_ta - diff --git a/src/casscf/hessian.irp.f b/src/casscf/hessian.irp.f deleted file mode 100644 index 52be1b76..00000000 --- a/src/casscf/hessian.irp.f +++ /dev/null @@ -1,656 +0,0 @@ -use bitmasks - -BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)] - BEGIN_DOC - ! calculate the orbital hessian 2 - ! + + by hand, - ! determinant per determinant, as for the gradient - ! - ! we assume that we have natural active orbitals - END_DOC - implicit none - integer :: indx,ihole,ipart - integer :: jndx,jhole,jpart - character*3 :: iexc,jexc - real*8 :: res - - if (bavard) then - write(6,*) ' providing Hessian matrix hessmat ' - write(6,*) ' nMonoEx = ',nMonoEx - endif - - do indx=1,nMonoEx - do jndx=1,nMonoEx - hessmat(indx,jndx)=0.D0 - end do - end do - - do indx=1,nMonoEx - ihole=excit(1,indx) - ipart=excit(2,indx) - iexc=excit_class(indx) - do jndx=indx,nMonoEx - jhole=excit(1,jndx) - jpart=excit(2,jndx) - jexc=excit_class(jndx) - call calc_hess_elem(ihole,ipart,jhole,jpart,res) - hessmat(indx,jndx)=res - hessmat(jndx,indx)=res - end do - end do - -END_PROVIDER - -subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res) - BEGIN_DOC - ! eq 19 of Siegbahn et al, Physica Scripta 1980 - ! we calculate 2 - ! + + - ! average over all states is performed. - ! no transition between states. - END_DOC - implicit none - integer :: ihole,ipart,ispin,mu,istate - integer :: jhole,jpart,jspin - integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu - real*8 :: res - integer(bit_kind), allocatable :: det_mu(:,:) - integer(bit_kind), allocatable :: det_nu(:,:) - integer(bit_kind), allocatable :: det_mu_pq(:,:) - integer(bit_kind), allocatable :: det_mu_rs(:,:) - integer(bit_kind), allocatable :: det_nu_rs(:,:) - integer(bit_kind), allocatable :: det_mu_pqrs(:,:) - integer(bit_kind), allocatable :: det_mu_rspq(:,:) - real*8 :: i_H_psi_array(N_states),phase,phase2,phase3 - real*8 :: i_H_j_element - allocate(det_mu(N_int,2)) - allocate(det_nu(N_int,2)) - allocate(det_mu_pq(N_int,2)) - allocate(det_mu_rs(N_int,2)) - allocate(det_nu_rs(N_int,2)) - allocate(det_mu_pqrs(N_int,2)) - allocate(det_mu_rspq(N_int,2)) - integer :: mu_pq_possible - integer :: mu_rs_possible - integer :: nu_rs_possible - integer :: mu_pqrs_possible - integer :: mu_rspq_possible - - res=0.D0 - - ! the terms <0|E E H |0> - do mu=1,n_det - ! get the string of the determinant - call det_extract(det_mu,mu,N_int) - do ispin=1,2 - ! do the monoexcitation pq on it - call det_copy(det_mu,det_mu_pq,N_int) - call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq & - ,ihole,ipart,ispin,phase,mu_pq_possible) - if (mu_pq_possible.eq.1) then - ! possible, but not necessarily in the list - ! do the second excitation - do jspin=1,2 - call det_copy(det_mu_pq,det_mu_pqrs,N_int) - call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs& - ,jhole,jpart,jspin,phase2,mu_pqrs_possible) - ! excitation possible - if (mu_pqrs_possible.eq.1) then - call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & - ,N_det,N_det,N_states,i_H_psi_array) - do istate=1,N_states - res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2 - end do - end if - ! try the de-excitation with opposite sign - call det_copy(det_mu_pq,det_mu_pqrs,N_int) - call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs& - ,jpart,jhole,jspin,phase2,mu_pqrs_possible) - phase2=-phase2 - ! excitation possible - if (mu_pqrs_possible.eq.1) then - call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & - ,N_det,N_det,N_states,i_H_psi_array) - do istate=1,N_states - res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2 - end do - end if - end do - end if - ! exchange the notion of pq and rs - ! do the monoexcitation rs on the initial determinant - call det_copy(det_mu,det_mu_rs,N_int) - call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs & - ,jhole,jpart,ispin,phase2,mu_rs_possible) - if (mu_rs_possible.eq.1) then - ! do the second excitation - do jspin=1,2 - call det_copy(det_mu_rs,det_mu_rspq,N_int) - call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq& - ,ihole,ipart,jspin,phase3,mu_rspq_possible) - ! excitation possible (of course, the result is outside the CAS) - if (mu_rspq_possible.eq.1) then - call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & - ,N_det,N_det,N_states,i_H_psi_array) - do istate=1,N_states - res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3 - end do - end if - ! we may try the de-excitation, with opposite sign - call det_copy(det_mu_rs,det_mu_rspq,N_int) - call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq& - ,ipart,ihole,jspin,phase3,mu_rspq_possible) - phase3=-phase3 - ! excitation possible (of course, the result is outside the CAS) - if (mu_rspq_possible.eq.1) then - call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & - ,N_det,N_det,N_states,i_H_psi_array) - do istate=1,N_states - res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3 - end do - end if - end do - end if - ! - ! the operator E H E, we have to do a double loop over the determinants - ! we still have the determinant mu_pq and the phase in memory - if (mu_pq_possible.eq.1) then - do nu=1,N_det - call det_extract(det_nu,nu,N_int) - do jspin=1,2 - call det_copy(det_nu,det_nu_rs,N_int) - call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs & - ,jhole,jpart,jspin,phase2,nu_rs_possible) - ! excitation possible ? - if (nu_rs_possible.eq.1) then - call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element) - do istate=1,N_states - res+=2.D0*i_H_j_element*psi_coef(mu,istate) & - *psi_coef(nu,istate)*phase*phase2 - end do - end if - end do - end do - end if - end do - end do - - ! state-averaged Hessian - res*=1.D0/dble(N_states) - -end subroutine calc_hess_elem - -BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)] - BEGIN_DOC - ! explicit hessian matrix from density matrices and integrals - ! of course, this will be used for a direct Davidson procedure later - ! we will not store the matrix in real life - ! formulas are broken down as functions for the 6 classes of matrix elements - ! - END_DOC - implicit none - integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift - - real*8 :: hessmat_itju - real*8 :: hessmat_itja - real*8 :: hessmat_itua - real*8 :: hessmat_iajb - real*8 :: hessmat_iatb - real*8 :: hessmat_taub - - if (bavard) then - write(6,*) ' providing Hessian matrix hessmat2 ' - write(6,*) ' nMonoEx = ',nMonoEx - endif - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) & - !$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift) - - !$OMP DO - do i=1,n_core_inact_orb - do t=1,n_act_orb - indx = t + (i-1)*n_act_orb - jndx=indx - do j=i,n_core_inact_orb - if (i.eq.j) then - ustart=t - else - ustart=1 - end if - do u=ustart,n_act_orb - hessmat2(jndx,indx)=hessmat_itju(i,t,j,u) - jndx+=1 - end do - end do - do j=1,n_core_inact_orb - do a=1,n_virt_orb - hessmat2(jndx,indx)=hessmat_itja(i,t,j,a) - jndx+=1 - end do - end do - do u=1,n_act_orb - do a=1,n_virt_orb - hessmat2(jndx,indx)=hessmat_itua(i,t,u,a) - jndx+=1 - end do - end do - end do - end do - !$OMP END DO NOWAIT - - indx_shift = n_core_inact_orb*n_act_orb - !$OMP DO - do a=1,n_virt_orb - do i=1,n_core_inact_orb - indx = a + (i-1)*n_virt_orb + indx_shift - jndx=indx - do j=i,n_core_inact_orb - if (i.eq.j) then - bstart=a - else - bstart=1 - end if - do b=bstart,n_virt_orb - hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b) - jndx+=1 - end do - end do - do t=1,n_act_orb - do b=1,n_virt_orb - hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b) - jndx+=1 - end do - end do - end do - end do - !$OMP END DO NOWAIT - - indx_shift += n_core_inact_orb*n_virt_orb - !$OMP DO - do a=1,n_virt_orb - do t=1,n_act_orb - indx = a + (t-1)*n_virt_orb + indx_shift - jndx=indx - do u=t,n_act_orb - if (t.eq.u) then - bstart=a - else - bstart=1 - end if - do b=bstart,n_virt_orb - hessmat2(jndx,indx)=hessmat_taub(t,a,u,b) - jndx+=1 - end do - end do - end do - end do - !$OMP END DO - - !$OMP END PARALLEL - - do jndx=1,nMonoEx - do indx=1,jndx-1 - hessmat2(indx,jndx) = hessmat2(jndx,indx) - enddo - enddo - - -END_PROVIDER - -real*8 function hessmat_itju(i,t,j,u) - BEGIN_DOC - ! the orbital hessian for core/inactive -> active, core/inactive -> active - ! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu - ! - ! we assume natural orbitals - END_DOC - implicit none - integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj - real*8 :: term,t2 - - ii=list_core_inact(i) - tt=list_act(t) - if (i.eq.j) then - if (t.eq.u) then - ! diagonal element - term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) & - -2.D0*(Fipq(ii,ii)+Fapq(ii,ii)) - term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i)) - term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) & - -bielec_pqxx_no(tt,tt,i,i)) - term-=occnum(tt)*Fipq(tt,tt) - do v=1,n_act_orb - vv=list_act(v) - do x=1,n_act_orb - xx=list_act(x) - term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) & - +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & - bielec_pxxq_no(vv,i,i,xx)) - do y=1,n_act_orb - term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx) - end do - end do - end do - else - ! it/iu, t != u - uu=list_act(u) - term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu)) - term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & - -bielec_PQxx_no(tt,uu,i,j)) - term-=occnum(tt)*Fipq(uu,tt) - term-=(occnum(tt)+occnum(uu)) & - *(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i)) - do v=1,n_act_orb - vv=list_act(v) - ! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct - do x=1,n_act_orb - xx=list_act(x) - term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) & - +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & - *bielec_pxxq_no(vv,i,i,xx)) - do y=1,n_act_orb - term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx) - end do - end do - end do - end if - else - ! it/ju - jj=list_core_inact(j) - uu=list_act(u) - if (t.eq.u) then - term=occnum(tt)*Fipq(ii,jj) - term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj)) - else - term=0.D0 - end if - term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & - -bielec_PQxx_no(tt,uu,i,j)) - term-=(occnum(tt)+occnum(uu))* & - (4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & - -bielec_PQxx_no(uu,tt,i,j)) - do v=1,n_act_orb - vv=list_act(v) - do x=1,n_act_orb - xx=list_act(x) - term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) & - +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & - *bielec_pxxq_no(vv,i,j,xx)) - end do - end do - end if - - term*=2.D0 - hessmat_itju=term - -end function hessmat_itju - -real*8 function hessmat_itja(i,t,j,a) - BEGIN_DOC - ! the orbital hessian for core/inactive -> active, core/inactive -> virtual - END_DOC - implicit none - integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y - real*8 :: term - - ! it/ja - ii=list_core_inact(i) - tt=list_act(t) - jj=list_core_inact(j) - aa=list_virt(a) - term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) & - -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt)) - term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) & - -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt)) - if (i.eq.j) then - term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt)) - term-=0.5D0*occnum(tt)*Fipq(aa,tt) - do v=1,n_act_orb - do x=1,n_act_orb - do y=1,n_act_orb - term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa) - end do - end do - end do - end if - term*=2.D0 - hessmat_itja=term - -end function hessmat_itja - -real*8 function hessmat_itua(i,t,u,a) - BEGIN_DOC - ! the orbital hessian for core/inactive -> active, active -> virtual - END_DOC - implicit none - integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 - real*8 :: term - - ii=list_core_inact(i) - tt=list_act(t) - t3=t+n_core_inact_orb - uu=list_act(u) - u3=u+n_core_inact_orb - aa=list_virt(a) - if (t.eq.u) then - term=-occnum(tt)*Fipq(aa,ii) - else - term=0.D0 - end if - term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)& - +bielec_pxxq_no(aa,t3,u3,ii)) - do v=1,n_act_orb - vv=list_act(v) - v3=v+n_core_inact_orb - do x=1,n_act_orb - integer :: x3 - xx=list_act(x) - x3=x+n_core_inact_orb - term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) & - +(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) & - *bielec_pqxx_no(aa,xx,v3,i)) - end do - end do - if (t.eq.u) then - term+=Fipq(aa,ii)+Fapq(aa,ii) - end if - term*=2.D0 - hessmat_itua=term - -end function hessmat_itua - -real*8 function hessmat_iajb(i,a,j,b) - BEGIN_DOC - ! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual - END_DOC - implicit none - integer :: i,a,j,b,ii,aa,jj,bb - real*8 :: term - - ii=list_core_inact(i) - aa=list_virt(a) - if (i.eq.j) then - if (a.eq.b) then - ! ia/ia - term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii)) - term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i)) - else - bb=list_virt(b) - ! ia/ib - term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb)) - term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i)) - end if - else - ! ia/jb - jj=list_core_inact(j) - bb=list_virt(b) - term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) & - -bielec_pxxq_no(aa,j,i,bb)) - if (a.eq.b) then - term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj)) - end if - end if - term*=2.D0 - hessmat_iajb=term - -end function hessmat_iajb - -real*8 function hessmat_iatb(i,a,t,b) - BEGIN_DOC - ! the orbital hessian for core/inactive -> virtual, active -> virtual - END_DOC - implicit none - integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 - real*8 :: term - - ii=list_core_inact(i) - aa=list_virt(a) - tt=list_act(t) - bb=list_virt(b) - t3=t+n_core_inact_orb - term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)& - -bielec_pqxx_no(aa,bb,i,t3)) - if (a.eq.b) then - term-=Fipq(tt,ii)+Fapq(tt,ii) - term-=0.5D0*occnum(tt)*Fipq(tt,ii) - do v=1,n_act_orb - do x=1,n_act_orb - do y=1,n_act_orb - term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii) - end do - end do - end do - end if - term*=2.D0 - hessmat_iatb=term - -end function hessmat_iatb - -real*8 function hessmat_taub(t,a,u,b) - BEGIN_DOC - ! the orbital hessian for act->virt,act->virt - END_DOC - implicit none - integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y - integer :: v3,x3 - real*8 :: term,t1,t2,t3 - - tt=list_act(t) - aa=list_virt(a) - if (t == u) then - if (a == b) then - ! ta/ta - t1=occnum(tt)*Fipq(aa,aa) - t2=0.D0 - t3=0.D0 - t1-=occnum(tt)*Fipq(tt,tt) - do v=1,n_act_orb - vv=list_act(v) - v3=v+n_core_inact_orb - do x=1,n_act_orb - xx=list_act(x) - x3=x+n_core_inact_orb - t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) & - +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & - bielec_pxxq_no(aa,x3,v3,aa)) - do y=1,n_act_orb - t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx) - end do - end do - end do - term=t1+t2+t3 - else - bb=list_virt(b) - ! ta/tb b/=a - term=occnum(tt)*Fipq(aa,bb) - do v=1,n_act_orb - vv=list_act(v) - v3=v+n_core_inact_orb - do x=1,n_act_orb - xx=list_act(x) - x3=x+n_core_inact_orb - term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) & - +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) & - *bielec_pxxq_no(aa,x3,v3,bb)) - end do - end do - end if - else - ! ta/ub t/=u - uu=list_act(u) - bb=list_virt(b) - term=0.D0 - do v=1,n_act_orb - vv=list_act(v) - v3=v+n_core_inact_orb - do x=1,n_act_orb - xx=list_act(x) - x3=x+n_core_inact_orb - term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) & - +(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) & - *bielec_pxxq_no(aa,x3,v3,bb)) - end do - end do - if (a.eq.b) then - term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu)) - do v=1,n_act_orb - do y=1,n_act_orb - do x=1,n_act_orb - term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu) - term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt) - end do - end do - end do - end if - - end if - - term*=2.D0 - hessmat_taub=term - -end function hessmat_taub - -BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)] - BEGIN_DOC - ! the diagonal of the Hessian, needed for the Davidson procedure - END_DOC - implicit none - integer :: i,t,a,indx,indx_shift - real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub - - !$OMP PARALLEL DEFAULT(NONE) & - !$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) & - !$OMP PRIVATE(i,indx,t,a,indx_shift) - - !$OMP DO - do i=1,n_core_inact_orb - do t=1,n_act_orb - indx = t + (i-1)*n_act_orb - hessdiag(indx)=hessmat_itju(i,t,i,t) - end do - end do - !$OMP END DO NOWAIT - - indx_shift = n_core_inact_orb*n_act_orb - !$OMP DO - do a=1,n_virt_orb - do i=1,n_core_inact_orb - indx = a + (i-1)*n_virt_orb + indx_shift - hessdiag(indx)=hessmat_iajb(i,a,i,a) - end do - end do - !$OMP END DO NOWAIT - - indx_shift += n_core_inact_orb*n_virt_orb - !$OMP DO - do a=1,n_virt_orb - do t=1,n_act_orb - indx = a + (t-1)*n_virt_orb + indx_shift - hessdiag(indx)=hessmat_taub(t,a,t,a) - end do - end do - !$OMP END DO - !$OMP END PARALLEL - -END_PROVIDER diff --git a/src/casscf/mcscf_fock.irp.f b/src/casscf/mcscf_fock.irp.f deleted file mode 100644 index e4568405..00000000 --- a/src/casscf/mcscf_fock.irp.f +++ /dev/null @@ -1,80 +0,0 @@ -BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ] - BEGIN_DOC - ! the inactive Fock matrix, in molecular orbitals - END_DOC - implicit none - integer :: p,q,k,kk,t,tt,u,uu - - do q=1,mo_num - do p=1,mo_num - Fipq(p,q)=one_ints_no(p,q) - end do - end do - - ! the inactive Fock matrix - do k=1,n_core_inact_orb - kk=list_core_inact(k) - do q=1,mo_num - do p=1,mo_num - Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q) - end do - end do - end do - - if (bavard) then - integer :: i - write(6,*) - write(6,*) ' the diagonal of the inactive effective Fock matrix ' - write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num) - write(6,*) - end if - - -END_PROVIDER - - -BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ] - BEGIN_DOC - ! the active active Fock matrix, in molecular orbitals - ! we create them in MOs, quite expensive - ! - ! for an implementation in AOs we need first the natural orbitals - ! for forming an active density matrix in AOs - ! - END_DOC - implicit none - integer :: p,q,k,kk,t,tt,u,uu - - Fapq = 0.d0 - - ! the active Fock matrix, D0tu is diagonal - do t=1,n_act_orb - tt=list_act(t) - do q=1,mo_num - do p=1,mo_num - Fapq(p,q)+=occnum(tt) & - *(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q)) - end do - end do - end do - - if (bavard) then - integer :: i - write(6,*) - write(6,*) ' the effective Fock matrix over MOs' - write(6,*) - - write(6,*) - write(6,*) ' the diagonal of the inactive effective Fock matrix ' - write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num) - write(6,*) - write(6,*) - write(6,*) ' the diagonal of the active Fock matrix ' - write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num) - write(6,*) - end if - - -END_PROVIDER - - diff --git a/src/casscf/natorb.irp.f b/src/casscf/natorb.irp.f deleted file mode 100644 index 9ce90304..00000000 --- a/src/casscf/natorb.irp.f +++ /dev/null @@ -1,231 +0,0 @@ - BEGIN_PROVIDER [real*8, occnum, (mo_num)] - implicit none - BEGIN_DOC - ! MO occupation numbers - END_DOC - - integer :: i - occnum=0.D0 - do i=1,n_core_inact_orb - occnum(list_core_inact(i))=2.D0 - end do - - do i=1,n_act_orb - occnum(list_act(i))=occ_act(i) - end do - - if (bavard) then - write(6,*) ' occupation numbers ' - do i=1,mo_num - write(6,*) i,occnum(i) - end do - endif - -END_PROVIDER - - - BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ] -&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ] - implicit none - BEGIN_DOC - ! Natural orbitals of CI - END_DOC - integer :: i, j - double precision :: Vt(n_act_orb,n_act_orb) - -! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb) - call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb) - - if (bavard) then - write(6,*) ' found occupation numbers as ' - do i=1,n_act_orb - write(6,*) i,occ_act(i) - end do - - integer :: nmx - real*8 :: xmx - do i=1,n_act_orb - ! largest element of the eigenvector should be positive - xmx=0.D0 - nmx=0 - do j=1,n_act_orb - if (abs(natOrbsCI(j,i)).gt.xmx) then - nmx=j - xmx=abs(natOrbsCI(j,i)) - end if - end do - xmx=sign(1.D0,natOrbsCI(nmx,i)) - do j=1,n_act_orb - natOrbsCI(j,i)*=xmx - end do - - write(6,*) ' Eigenvector No ',i - write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb) - end do - end if - -END_PROVIDER - - -BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] - implicit none - BEGIN_DOC - ! 4-index transformation of 2part matrices - END_DOC - integer :: i,j,k,l,p,q - real*8 :: d(n_act_orb) - - ! index per index - ! first quarter - P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:) - - do j=1,n_act_orb - do k=1,n_act_orb - do l=1,n_act_orb - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - P0tuvx_no(p,j,k,l)=d(p) - end do - end do - end do - end do - ! 2nd quarter - do j=1,n_act_orb - do k=1,n_act_orb - do l=1,n_act_orb - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - P0tuvx_no(j,p,k,l)=d(p) - end do - end do - end do - end do - ! 3rd quarter - do j=1,n_act_orb - do k=1,n_act_orb - do l=1,n_act_orb - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - P0tuvx_no(j,k,p,l)=d(p) - end do - end do - end do - end do - ! 4th quarter - do j=1,n_act_orb - do k=1,n_act_orb - do l=1,n_act_orb - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - P0tuvx_no(j,k,l,p)=d(p) - end do - end do - end do - end do - -END_PROVIDER - - - -BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)] - implicit none - BEGIN_DOC - ! Transformed one-e integrals - END_DOC - integer :: i,j, p, q - real*8 :: d(n_act_orb) - one_ints_no(:,:)=mo_one_e_integrals(:,:) - - ! 1st half-trf - do j=1,mo_num - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - one_ints_no(list_act(p),j)=d(p) - end do - end do - - ! 2nd half-trf - do j=1,mo_num - do p=1,n_act_orb - d(p)=0.D0 - end do - do p=1,n_act_orb - do q=1,n_act_orb - d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p) - end do - end do - do p=1,n_act_orb - one_ints_no(j,list_act(p))=d(p) - end do - end do -END_PROVIDER - - -BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ] - implicit none - BEGIN_DOC - ! Rotation matrix from current MOs to the CI natural MOs - END_DOC - integer :: p,q - - NatOrbsCI_mos(:,:) = 0.d0 - - do q = 1,mo_num - NatOrbsCI_mos(q,q) = 1.d0 - enddo - - do q = 1,n_act_orb - do p = 1,n_act_orb - NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q) - enddo - enddo -END_PROVIDER - - -BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)] - implicit none - BEGIN_DOC -! FCI natural orbitals - END_DOC - - call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, & - mo_coef, size(mo_coef,1), & - NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, & - NatOrbsFCI, size(NatOrbsFCI,1)) -END_PROVIDER - diff --git a/src/casscf/neworbs.irp.f b/src/casscf/neworbs.irp.f deleted file mode 100644 index 06a89318..00000000 --- a/src/casscf/neworbs.irp.f +++ /dev/null @@ -1,221 +0,0 @@ -BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)] - implicit none - BEGIN_DOC - ! Single-excitation matrix - END_DOC - - integer :: i,j - - do i=1,nMonoEx+1 - do j=1,nMonoEx+1 - SXmatrix(i,j)=0.D0 - end do - end do - - do i=1,nMonoEx - SXmatrix(1,i+1)=gradvec2(i) - SXmatrix(1+i,1)=gradvec2(i) - end do - - do i=1,nMonoEx - do j=1,nMonoEx - SXmatrix(i+1,j+1)=hessmat2(i,j) - SXmatrix(j+1,i+1)=hessmat2(i,j) - end do - end do - - do i = 1, nMonoEx - SXmatrix(i+1,i+1) += level_shift_casscf - enddo - if (bavard) then - do i=2,nMonoEx - write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i) - end do - end if - - -END_PROVIDER - - BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)] -&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)] - implicit none - BEGIN_DOC - ! Eigenvectors/eigenvalues of the single-excitation matrix - END_DOC - call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1) - if (bavard) then - write(6,*) ' SXdiag : lowest 5 eigenvalues ' - write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1) - if(nmonoex.gt.0)then - write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2) - write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3) - write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4) - write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5) - endif - write(6,*) - write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1) - endif -END_PROVIDER - - BEGIN_PROVIDER [real*8, energy_improvement] - implicit none - if(state_following_casscf)then - energy_improvement = SXeigenval(best_vector_ovrlp_casscf) - else - energy_improvement = SXeigenval(1) - endif - END_PROVIDER - - - - BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ] -&BEGIN_PROVIDER [ double precision, best_overlap_casscf ] - implicit none - integer :: i - double precision :: c0 - best_overlap_casscf = 0.D0 - best_vector_ovrlp_casscf = -1000 - do i=1,nMonoEx+1 - if (SXeigenval(i).lt.0.D0) then - if (abs(SXeigenvec(1,i)).gt.best_overlap_casscf) then - best_overlap_casscf=abs(SXeigenvec(1,i)) - best_vector_ovrlp_casscf = i - end if - end if - end do - if(best_vector_ovrlp_casscf.lt.0)then - best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1) - endif - c0=SXeigenvec(1,best_vector_ovrlp_casscf) - if (bavard) then - write(6,*) ' SXdiag : eigenvalue for best overlap with ' - write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf) - write(6,*) ' weight of the 1st element ',c0 - endif - END_PROVIDER - - BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)] - implicit none - BEGIN_DOC - ! Best eigenvector of the single-excitation matrix - END_DOC - integer :: i - double precision :: c0 - c0=SXeigenvec(1,best_vector_ovrlp_casscf) - do i=1,nMonoEx+1 - SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0 - end do - END_PROVIDER - - -BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ] - implicit none - BEGIN_DOC - ! Updated orbitals - END_DOC - integer :: i,j,ialph - - if(state_following_casscf)then - print*,'Using the state following casscf ' - call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, & - NatOrbsFCI, size(NatOrbsFCI,1), & - Umat, size(Umat,1), 0.d0, & - NewOrbs, size(NewOrbs,1)) - - level_shift_casscf *= 0.5D0 - level_shift_casscf = max(level_shift_casscf,0.002d0) - !touch level_shift_casscf - else - if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then - print*,'Taking the lowest root for the CASSCF' - print*,'!!! SWAPPING MOS !!!!!!' - level_shift_casscf *= 2.D0 - level_shift_casscf = min(level_shift_casscf,0.5d0) - print*,'level_shift_casscf = ',level_shift_casscf - NewOrbs = switch_mo_coef - !mo_coef = switch_mo_coef - !soft_touch mo_coef - !call save_mos_no_occ - !stop - else - level_shift_casscf *= 0.5D0 - level_shift_casscf = max(level_shift_casscf,0.002d0) - !touch level_shift_casscf - call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, & - NatOrbsFCI, size(NatOrbsFCI,1), & - Umat, size(Umat,1), 0.d0, & - NewOrbs, size(NewOrbs,1)) - endif - endif - -END_PROVIDER - -BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ] - implicit none - BEGIN_DOC - ! Orbital rotation matrix - END_DOC - integer :: i,j,indx,k,iter,t,a,ii,tt,aa - logical :: converged - - real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num) - real*8 :: Tmat(mo_num,mo_num) - real*8 :: f - - ! the orbital rotation matrix T - Tmat(:,:)=0.D0 - indx=1 - do i=1,n_core_inact_orb - ii=list_core_inact(i) - do t=1,n_act_orb - tt=list_act(t) - indx+=1 - Tmat(ii,tt)= SXvector(indx) - Tmat(tt,ii)=-SXvector(indx) - end do - end do - do i=1,n_core_inact_orb - ii=list_core_inact(i) - do a=1,n_virt_orb - aa=list_virt(a) - indx+=1 - Tmat(ii,aa)= SXvector(indx) - Tmat(aa,ii)=-SXvector(indx) - end do - end do - do t=1,n_act_orb - tt=list_act(t) - do a=1,n_virt_orb - aa=list_virt(a) - indx+=1 - Tmat(tt,aa)= SXvector(indx) - Tmat(aa,tt)=-SXvector(indx) - end do - end do - - ! Form the exponential - - Tpotmat(:,:)=0.D0 - Umat(:,:) =0.D0 - do i=1,mo_num - Tpotmat(i,i)=1.D0 - Umat(i,i) =1.d0 - end do - iter=0 - converged=.false. - do while (.not.converged) - iter+=1 - f = 1.d0 / dble(iter) - Tpotmat2(:,:) = Tpotmat(:,:) * f - call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, & - Tpotmat2, size(Tpotmat2,1), & - Tmat, size(Tmat,1), 0.d0, & - Tpotmat, size(Tpotmat,1)) - Umat(:,:) = Umat(:,:) + Tpotmat(:,:) - - converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30) - end do -END_PROVIDER - - - diff --git a/src/casscf/reorder_orb.irp.f b/src/casscf/reorder_orb.irp.f deleted file mode 100644 index 3cb90522..00000000 --- a/src/casscf/reorder_orb.irp.f +++ /dev/null @@ -1,70 +0,0 @@ -subroutine reorder_orbitals_for_casscf - implicit none - BEGIN_DOC -! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual - END_DOC - integer :: i,j,iorb - integer, allocatable :: iorder(:),array(:) - allocate(iorder(mo_num),array(mo_num)) - do i = 1, n_core_orb - iorb = list_core(i) - array(iorb) = i - enddo - - do i = 1, n_inact_orb - iorb = list_inact(i) - array(iorb) = mo_num + i - enddo - - do i = 1, n_act_orb - iorb = list_act(i) - array(iorb) = 2 * mo_num + i - enddo - - do i = 1, n_virt_orb - iorb = list_virt(i) - array(iorb) = 3 * mo_num + i - enddo - - do i = 1, mo_num - iorder(i) = i - enddo - call isort(array,iorder,mo_num) - double precision, allocatable :: mo_coef_new(:,:) - allocate(mo_coef_new(ao_num,mo_num)) - do i = 1, mo_num - mo_coef_new(:,i) = mo_coef(:,iorder(i)) - enddo - mo_coef = mo_coef_new - touch mo_coef - - list_core_reverse = 0 - do i = 1, n_core_orb - list_core(i) = i - list_core_reverse(i) = i - mo_class(i) = "Core" - enddo - - list_inact_reverse = 0 - do i = 1, n_inact_orb - list_inact(i) = i + n_core_orb - list_inact_reverse(i+n_core_orb) = i - mo_class(i+n_core_orb) = "Inactive" - enddo - - list_act_reverse = 0 - do i = 1, n_act_orb - list_act(i) = n_core_inact_orb + i - list_act_reverse(n_core_inact_orb + i) = i - mo_class(n_core_inact_orb + i) = "Active" - enddo - - list_virt_reverse = 0 - do i = 1, n_virt_orb - list_virt(i) = n_core_inact_orb + n_act_orb + i - list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i - mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual" - enddo - touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse - -end diff --git a/src/casscf/save_energy.irp.f b/src/casscf/save_energy.irp.f deleted file mode 100644 index 8729c5af..00000000 --- a/src/casscf/save_energy.irp.f +++ /dev/null @@ -1,9 +0,0 @@ -subroutine save_energy(E,pt2) - implicit none - BEGIN_DOC -! Saves the energy in |EZFIO|. - END_DOC - double precision, intent(in) :: E(N_states), pt2(N_states) - call ezfio_set_casscf_energy(E(1:N_states)) - call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states)) -end diff --git a/src/casscf/superci_dm.irp.f b/src/casscf/superci_dm.irp.f deleted file mode 100644 index ee831c35..00000000 --- a/src/casscf/superci_dm.irp.f +++ /dev/null @@ -1,207 +0,0 @@ - BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)] - implicit none - BEGIN_DOC -! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF -! -! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 -! -! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci ) - END_DOC - super_ci_dm = 0.d0 - integer :: i,j,iorb,jorb - integer :: a,aorb,b,borb - integer :: t,torb,v,vorb,u,uorb,x,xorb - double precision :: c0,ci - c0 = SXeigenvec(1,1) - ! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - ! loop over the core/inact - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a - ! loop over the core/inact - do j = 1, n_core_inact_orb - jorb = list_core_inact(j) - ! loop over the virtual - do a = 1, n_virt_orb - aorb = list_virt(a) - super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a - enddo - do t = 1, n_act_orb - torb = list_act(t) - ! thrid term of the B3.a - super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t)) - enddo - enddo - enddo - - ! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - do t = 1, n_act_orb - torb = list_act(t) - super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t)) - super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t)) - do a = 1, n_virt_orb - aorb = list_virt(a) - super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t) - super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t) - enddo - enddo - enddo - - ! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - do a = 1, n_virt_orb - aorb = list_virt(a) - super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb) - super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb) - enddo - enddo - - ! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - do t = 1, n_act_orb - torb = list_act(t) - super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d - do x = 1, n_act_orb - xorb = list_act(x) - super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm - enddo - do u = 1, n_act_orb - uorb = list_act(u) - - ! second term of equation B3.d - do x = 1, n_act_orb - xorb = list_act(x) - do v = 1, n_act_orb - vorb = list_act(v) - super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm - enddo - enddo - - ! third term of equation B3.d - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u)) - enddo - - enddo - enddo - - ! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - do t = 1, n_act_orb - torb = list_act(t) - do a = 1, n_virt_orb - aorb = list_virt(a) - super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t) - super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t) - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t)) - super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t)) - enddo - enddo - enddo - - ! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173 - do a = 1, n_virt_orb - aorb = list_virt(a) - do b = 1, n_virt_orb - borb= list_virt(b) - - ! First term of equation B3.f - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb) - enddo - - ! Second term of equation B3.f - do t = 1, n_act_orb - torb = list_act(t) - super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t) - enddo - enddo - enddo - - END_PROVIDER - - BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num) -&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num) - implicit none - call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb) - -END_PROVIDER - - BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)] - implicit none - BEGIN_DOC - ! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173 - ! - ! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term - END_DOC - integer :: a,aorb,i,iorb - integer :: x,xorb,v,vorb - mat_tmp_dm_super_ci = 0.d0 - do v = 1, n_act_orb - vorb = list_act(v) - do x = 1, n_act_orb - xorb = list_act(x) - do a = 1, n_virt_orb - aorb = list_virt(a) - mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb) - enddo - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - ! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER - mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb) - enddo - enddo - enddo - END_PROVIDER - - BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)] - implicit none - integer :: i,j,iorb,jorb - integer :: a, aorb,t, torb - double precision :: sqrt2 - - sqrt2 = 1.d0/dsqrt(2.d0) - do i = 1, nMonoEx - iorb = excit(1,i) - jorb = excit(2,i) - lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1) - lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1) - enddo - - ! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173 - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - do t = 1, n_act_orb - torb = list_act(t) - lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0) - lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0) - enddo - enddo - - ! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173 - do i = 1, n_core_inact_orb - iorb = list_core_inact(i) - do a = 1, n_virt_orb - aorb = list_virt(a) - lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2 - lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2 - enddo - enddo - - ! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173 - do a = 1, n_virt_orb - aorb = list_virt(a) - do t = 1, n_act_orb - torb = list_act(t) - lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0) - lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0) - enddo - enddo - - END_PROVIDER - diff --git a/src/casscf/swap_orb.irp.f b/src/casscf/swap_orb.irp.f deleted file mode 100644 index 5d442157..00000000 --- a/src/casscf/swap_orb.irp.f +++ /dev/null @@ -1,132 +0,0 @@ - BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)] - implicit none - integer :: i - do i=2,nMonoEx+1 - SXvector_lowest(i-1)=SXeigenvec(i,1) - enddo - END_PROVIDER - - BEGIN_PROVIDER [double precision, thresh_overlap_switch] - implicit none - thresh_overlap_switch = 0.5d0 - END_PROVIDER - - BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)] -&BEGIN_PROVIDER [integer, n_max_overlap] -&BEGIN_PROVIDER [integer, dim_n_max_overlap] - implicit none - double precision, allocatable :: vec_tmp(:) - integer, allocatable :: iorder(:) - allocate(vec_tmp(nMonoEx),iorder(nMonoEx)) - integer :: i - do i = 1, nMonoEx - iorder(i) = i - vec_tmp(i) = -dabs(SXvector_lowest(i)) - enddo - call dsort(vec_tmp,iorder,nMonoEx) - n_max_overlap = 0 - do i = 1, nMonoEx - if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then - n_max_overlap += 1 - max_overlap(n_max_overlap) = iorder(i) - endif - enddo - dim_n_max_overlap = max(1,n_max_overlap) - END_PROVIDER - - BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)] -&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)] -&BEGIN_PROVIDER [integer, n_orb_swap ] - implicit none - use bitmasks ! you need to include the bitmasks_module.f90 features - integer :: i,imono,iorb,jorb,j - n_orb_swap = 0 - do i = 1, n_max_overlap - imono = max_overlap(i) - iorb = excit(1,imono) - jorb = excit(2,imono) - if (excit_class(imono) == "c-a" .and.hessmat2(imono,imono).gt.0.d0)then ! core --> active rotation - n_orb_swap += 1 - orb_swap(1,n_orb_swap) = iorb ! core - orb_swap(2,n_orb_swap) = jorb ! active - index_orb_swap(n_orb_swap) = imono - else if (excit_class(imono) == "a-v" .and.hessmat2(imono,imono).gt.0.d0)then ! active --> virtual rotation - n_orb_swap += 1 - orb_swap(1,n_orb_swap) = jorb ! virtual - orb_swap(2,n_orb_swap) = iorb ! active - index_orb_swap(n_orb_swap) = imono - endif - enddo - - integer,allocatable :: orb_swap_tmp(:,:) - allocate(orb_swap_tmp(2,dim_n_max_overlap)) - do i = 1, n_orb_swap - orb_swap_tmp(1,i) = orb_swap(1,i) - orb_swap_tmp(2,i) = orb_swap(2,i) - enddo - - integer(bit_kind), allocatable :: det_i(:),det_j(:) - allocate(det_i(N_int),det_j(N_int)) - logical, allocatable :: good_orb_rot(:) - allocate(good_orb_rot(n_orb_swap)) - integer, allocatable :: index_orb_swap_tmp(:) - allocate(index_orb_swap_tmp(dim_n_max_overlap)) - index_orb_swap_tmp = index_orb_swap - good_orb_rot = .True. - integer :: icount,k - do i = 1, n_orb_swap - if(.not.good_orb_rot(i))cycle - det_i = 0_bit_kind - call set_bit_to_integer(orb_swap(1,i),det_i,N_int) - call set_bit_to_integer(orb_swap(2,i),det_i,N_int) - do j = i+1, n_orb_swap - det_j = 0_bit_kind - call set_bit_to_integer(orb_swap(1,j),det_j,N_int) - call set_bit_to_integer(orb_swap(2,j),det_j,N_int) - icount = 0 - do k = 1, N_int - icount += popcnt(ior(det_i(k),det_j(k))) - enddo - if (icount.ne.4)then - good_orb_rot(i) = .False. - good_orb_rot(j) = .False. - exit - endif - enddo - enddo - icount = n_orb_swap - n_orb_swap = 0 - do i = 1, icount - if(good_orb_rot(i))then - n_orb_swap += 1 - index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i) - orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i) - orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i) - endif - enddo - - if(n_orb_swap.gt.0)then - print*,'n_orb_swap = ',n_orb_swap - endif - do i = 1, n_orb_swap - print*,'imono = ',index_orb_swap(i) - print*,orb_swap(1,i),'-->',orb_swap(2,i) - enddo - END_PROVIDER - - BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)] - implicit none - integer :: i,j,iorb,jorb - switch_mo_coef = NatOrbsFCI - do i = 1, n_orb_swap - iorb = orb_swap(1,i) - jorb = orb_swap(2,i) - do j = 1, ao_num - switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb) - enddo - do j = 1, ao_num - switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb) - enddo - enddo - - END_PROVIDER diff --git a/src/casscf/test_pert_2rdm.irp.f b/src/casscf/test_pert_2rdm.irp.f deleted file mode 100644 index 7c40de0f..00000000 --- a/src/casscf/test_pert_2rdm.irp.f +++ /dev/null @@ -1,29 +0,0 @@ -program test_pert_2rdm - implicit none - read_wf = .True. - touch read_wf -!call get_pert_2rdm - integer :: i,j,k,l,ii,jj,kk,ll - double precision :: accu , get_two_e_integral, integral - accu = 0.d0 - print*,'n_orb_pert_rdm = ',n_orb_pert_rdm - do ii = 1, n_orb_pert_rdm - i = list_orb_pert_rdm(ii) - do jj = 1, n_orb_pert_rdm - j = list_orb_pert_rdm(jj) - do kk = 1, n_orb_pert_rdm - k= list_orb_pert_rdm(kk) - do ll = 1, n_orb_pert_rdm - l = list_orb_pert_rdm(ll) - integral = get_two_e_integral(i,j,k,l,mo_integrals_map) -! if(dabs(pert_2rdm_provider(ii,jj,kk,ll) * integral).gt.1.d-12)then -! print*,i,j,k,l -! print*,pert_2rdm_provider(ii,jj,kk,ll) * integral,pert_2rdm_provider(ii,jj,kk,ll), pert_2rdm_provider(ii,jj,kk,ll), integral -! endif - accu += pert_2rdm_provider(ii,jj,kk,ll) * integral - enddo - enddo - enddo - enddo - print*,'accu = ',accu -end diff --git a/src/casscf/tot_en.irp.f b/src/casscf/tot_en.irp.f deleted file mode 100644 index 1d70e087..00000000 --- a/src/casscf/tot_en.irp.f +++ /dev/null @@ -1,101 +0,0 @@ - BEGIN_PROVIDER [real*8, etwo] -&BEGIN_PROVIDER [real*8, eone] -&BEGIN_PROVIDER [real*8, eone_bis] -&BEGIN_PROVIDER [real*8, etwo_bis] -&BEGIN_PROVIDER [real*8, etwo_ter] -&BEGIN_PROVIDER [real*8, ecore] -&BEGIN_PROVIDER [real*8, ecore_bis] - implicit none - integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3 - real*8 :: e_one_all,e_two_all - e_one_all=0.D0 - e_two_all=0.D0 - do i=1,n_core_inact_orb - ii=list_core_inact(i) - e_one_all+=2.D0*mo_one_e_integrals(ii,ii) - do j=1,n_core_inact_orb - jj=list_core_inact(j) - e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i) - end do - do t=1,n_act_orb - tt=list_act(t) - t3=t+n_core_inact_orb - do u=1,n_act_orb - uu=list_act(u) - u3=u+n_core_inact_orb - e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) & - -bielec_PQxx(tt,ii,i,u3)) - end do - end do - end do - do t=1,n_act_orb - tt=list_act(t) - do u=1,n_act_orb - uu=list_act(u) - e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu) - do v=1,n_act_orb - v3=v+n_core_inact_orb - do x=1,n_act_orb - x3=x+n_core_inact_orb - e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3) - end do - end do - end do - end do - ecore =nuclear_repulsion - ecore_bis=nuclear_repulsion - do i=1,n_core_inact_orb - ii=list_core_inact(i) - ecore +=2.D0*mo_one_e_integrals(ii,ii) - ecore_bis+=2.D0*mo_one_e_integrals(ii,ii) - do j=1,n_core_inact_orb - jj=list_core_inact(j) - ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i) - ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii) - end do - end do - eone =0.D0 - eone_bis=0.D0 - etwo =0.D0 - etwo_bis=0.D0 - etwo_ter=0.D0 - do t=1,n_act_orb - tt=list_act(t) - t3=t+n_core_inact_orb - do u=1,n_act_orb - uu=list_act(u) - u3=u+n_core_inact_orb - eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu) - eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu) - do i=1,n_core_inact_orb - ii=list_core_inact(i) - eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) & - -bielec_PQxx(tt,ii,i,u3)) - eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) & - -bielec_PxxQ(tt,i,i,uu)) - end do - do v=1,n_act_orb - vv=list_act(v) - v3=v+n_core_inact_orb - do x=1,n_act_orb - xx=list_act(x) - x3=x+n_core_inact_orb - real*8 :: h1,h2,h3 - h1=bielec_PQxx(tt,uu,v3,x3) - h2=bielec_PxxQ(tt,u3,v3,xx) - h3=bielecCI(t,u,v,xx) - etwo +=P0tuvx(t,u,v,x)*h1 - etwo_bis+=P0tuvx(t,u,v,x)*h2 - etwo_ter+=P0tuvx(t,u,v,x)*h3 - if ((h1.ne.h2).or.(h1.ne.h3)) then - write(6,9901) t,u,v,x,h1,h2,h3 - 9901 format('aie: ',4I4,3E20.12) - end if - end do - end do - end do - end do - -END_PROVIDER - -