2024-12-04 15:58:59 +01:00
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, ao_extra_overlap , (ao_extra_num, ao_extra_num)]
|
|
|
|
|
|
|
|
BEGIN_DOC
|
|
|
|
! Overlap between atomic basis functions:
|
|
|
|
!
|
|
|
|
! :math:`\int \chi_i(r) \chi_j(r) dr`
|
|
|
|
END_DOC
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
integer :: i, j, n, l, dim1, power_A(3), power_B(3)
|
|
|
|
double precision :: overlap, overlap_x, overlap_y, overlap_z
|
|
|
|
double precision :: alpha, beta, c
|
|
|
|
double precision :: A_center(3), B_center(3)
|
|
|
|
|
|
|
|
ao_extra_overlap = 0.d0
|
|
|
|
|
|
|
|
dim1=100
|
|
|
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
|
|
|
!$OMP DEFAULT(NONE) &
|
|
|
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
|
|
|
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
|
|
|
|
!$OMP alpha, beta,i,j,n,l,c) &
|
|
|
|
!$OMP SHARED(extra_nucl_coord,ao_extra_power,ao_extra_prim_num, &
|
|
|
|
!$OMP ao_extra_overlap,ao_extra_num,ao_extra_coef_normalized_ordered_transp,ao_extra_nucl, &
|
|
|
|
!$OMP ao_extra_expo_ordered_transp,dim1)
|
|
|
|
do j=1,ao_extra_num
|
|
|
|
A_center(1) = extra_nucl_coord( ao_extra_nucl(j), 1 )
|
|
|
|
A_center(2) = extra_nucl_coord( ao_extra_nucl(j), 2 )
|
|
|
|
A_center(3) = extra_nucl_coord( ao_extra_nucl(j), 3 )
|
|
|
|
power_A(1) = ao_extra_power( j, 1 )
|
|
|
|
power_A(2) = ao_extra_power( j, 2 )
|
|
|
|
power_A(3) = ao_extra_power( j, 3 )
|
|
|
|
do i= 1,ao_extra_num
|
|
|
|
B_center(1) = extra_nucl_coord( ao_extra_nucl(i), 1 )
|
|
|
|
B_center(2) = extra_nucl_coord( ao_extra_nucl(i), 2 )
|
|
|
|
B_center(3) = extra_nucl_coord( ao_extra_nucl(i), 3 )
|
|
|
|
power_B(1) = ao_extra_power( i, 1 )
|
|
|
|
power_B(2) = ao_extra_power( i, 2 )
|
|
|
|
power_B(3) = ao_extra_power( i, 3 )
|
|
|
|
do n = 1,ao_extra_prim_num(j)
|
|
|
|
alpha = ao_extra_expo_ordered_transp(n,j)
|
|
|
|
do l = 1, ao_extra_prim_num(i)
|
|
|
|
beta = ao_extra_expo_ordered_transp(l,i)
|
|
|
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
|
|
c = ao_extra_coef_normalized_ordered_transp(n,j) * ao_extra_coef_normalized_ordered_transp(l,i)
|
|
|
|
ao_extra_overlap(i,j) += c * overlap
|
|
|
|
if(isnan(ao_extra_overlap(i,j)))then
|
|
|
|
print*,'i,j',i,j
|
|
|
|
print*,'l,n',l,n
|
|
|
|
print*,'c,overlap',c,overlap
|
|
|
|
print*,overlap_x,overlap_y,overlap_z
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, ao_extra_overlap_mixed , (ao_num, ao_extra_num)]
|
|
|
|
|
|
|
|
BEGIN_DOC
|
|
|
|
! Overlap between atomic basis functions:
|
|
|
|
!
|
|
|
|
! <AO_i|AO_j extra basis>
|
|
|
|
END_DOC
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
integer :: i, j, n, l, dim1, power_A(3), power_B(3)
|
|
|
|
double precision :: overlap, overlap_x, overlap_y, overlap_z
|
|
|
|
double precision :: alpha, beta, c
|
|
|
|
double precision :: A_center(3), B_center(3)
|
|
|
|
|
|
|
|
ao_extra_overlap_mixed = 0.d0
|
|
|
|
|
|
|
|
dim1=100
|
|
|
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
|
|
|
!$OMP DEFAULT(NONE) &
|
|
|
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
|
|
|
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
|
|
|
|
!$OMP alpha, beta,i,j,n,l,c) &
|
|
|
|
!$OMP SHARED(extra_nucl_coord,ao_extra_power,ao_extra_prim_num, &
|
|
|
|
!$OMP ao_extra_overlap_mixed,ao_extra_num,ao_extra_coef_normalized_ordered_transp,ao_extra_nucl, &
|
|
|
|
!$OMP ao_extra_expo_ordered_transp,dim1, &
|
|
|
|
!$OMP nucl_coord,ao_power,ao_prim_num, &
|
|
|
|
!$OMP ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
|
|
|
|
!$OMP ao_expo_ordered_transp)
|
|
|
|
|
|
|
|
do j=1,ao_extra_num
|
|
|
|
A_center(1) = extra_nucl_coord( ao_extra_nucl(j), 1 )
|
|
|
|
A_center(2) = extra_nucl_coord( ao_extra_nucl(j), 2 )
|
|
|
|
A_center(3) = extra_nucl_coord( ao_extra_nucl(j), 3 )
|
|
|
|
power_A(1) = ao_extra_power( j, 1 )
|
|
|
|
power_A(2) = ao_extra_power( j, 2 )
|
|
|
|
power_A(3) = ao_extra_power( j, 3 )
|
|
|
|
do i= 1,ao_num
|
|
|
|
B_center(1) = nucl_coord( ao_nucl(i), 1 )
|
|
|
|
B_center(2) = nucl_coord( ao_nucl(i), 2 )
|
|
|
|
B_center(3) = nucl_coord( ao_nucl(i), 3 )
|
|
|
|
power_B(1) = ao_power( i, 1 )
|
|
|
|
power_B(2) = ao_power( i, 2 )
|
|
|
|
power_B(3) = ao_power( i, 3 )
|
|
|
|
do n = 1,ao_extra_prim_num(j)
|
|
|
|
alpha = ao_extra_expo_ordered_transp(n,j)
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
|
|
beta = ao_expo_ordered_transp(l,i)
|
|
|
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
|
|
c = ao_extra_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
ao_extra_overlap_mixed(i,j) += c * overlap
|
|
|
|
if(isnan(ao_extra_overlap_mixed(i,j)))then
|
|
|
|
print*,'i,j',i,j
|
|
|
|
print*,'l,n',l,n
|
|
|
|
print*,'c,overlap',c,overlap
|
|
|
|
print*,overlap_x,overlap_y,overlap_z
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
! ---
|
|
|
|
|
2024-12-06 14:55:44 +01:00
|
|
|
subroutine get_ao_mixed_overlap(r_nucl,ao_mixed_overlap)
|
|
|
|
implicit none
|
|
|
|
BEGIN_DOC
|
|
|
|
! returns the overlap integrals between the AOs and the extra_AOs located at r_nucl
|
|
|
|
END_DOC
|
|
|
|
double precision, intent(in) :: r_nucl(extra_nucl_num,3)
|
|
|
|
double precision, intent(out):: ao_mixed_overlap(ao_extra_num,ao_num)
|
|
|
|
integer :: j,i,l,n, power_A(3), power_B(3), dim1
|
|
|
|
double precision :: A_center(3), B_center(3), alpha, beta
|
|
|
|
double precision :: overlap_x,overlap_y,overlap_z,overlap,c
|
|
|
|
dim1=100
|
|
|
|
ao_mixed_overlap = 0.d0
|
|
|
|
|
|
|
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
|
|
|
|
!$OMP DEFAULT(NONE) &
|
|
|
|
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
|
|
|
|
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
|
|
|
|
!$OMP alpha, beta,i,j,n,l,c) &
|
|
|
|
!$OMP SHARED(r_nucl,ao_extra_power,ao_extra_prim_num, &
|
|
|
|
!$OMP ao_mixed_overlap,ao_extra_num,ao_extra_coef_normalized_ordered_transp,ao_extra_nucl, &
|
|
|
|
!$OMP ao_extra_expo_ordered_transp,dim1, &
|
|
|
|
!$OMP nucl_coord,ao_power,ao_prim_num, &
|
|
|
|
!$OMP ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
|
|
|
|
!$OMP ao_expo_ordered_transp)
|
|
|
|
do i = 1, ao_num
|
|
|
|
B_center(1) = nucl_coord( ao_nucl(i), 1 )
|
|
|
|
B_center(2) = nucl_coord( ao_nucl(i), 2 )
|
|
|
|
B_center(3) = nucl_coord( ao_nucl(i), 3 )
|
|
|
|
power_B(1) = ao_power( i, 1 )
|
|
|
|
power_B(2) = ao_power( i, 2 )
|
|
|
|
power_B(3) = ao_power( i, 3 )
|
|
|
|
do l = 1, ao_prim_num(i)
|
|
|
|
beta = ao_expo_ordered_transp(l,i)
|
|
|
|
do j=1,ao_extra_num
|
|
|
|
A_center(1) = r_nucl( ao_extra_nucl(j), 1 )
|
|
|
|
A_center(2) = r_nucl( ao_extra_nucl(j), 2 )
|
|
|
|
A_center(3) = r_nucl( ao_extra_nucl(j), 3 )
|
|
|
|
power_A(1) = ao_extra_power( j, 1 )
|
|
|
|
power_A(2) = ao_extra_power( j, 2 )
|
|
|
|
power_A(3) = ao_extra_power( j, 3 )
|
|
|
|
do n = 1,ao_extra_prim_num(j)
|
|
|
|
alpha = ao_extra_expo_ordered_transp(n,j)
|
|
|
|
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
|
|
c = ao_extra_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
|
|
|
|
ao_mixed_overlap(j,i) += c * overlap
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
|
|
|
|
|
|
end
|