10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 20:33:20 +01:00

pot_ao_extra ints work

This commit is contained in:
eginer 2024-12-06 14:55:44 +01:00
parent 0fdaa03d99
commit 210179e8a0
7 changed files with 236 additions and 11 deletions

View File

@ -11,37 +11,37 @@ interface: ezfio, provider
[ao_extra_prim_num]
type: integer
doc: Number of primitives per |ao_extra|
size: (extra_basis.ao_extra_num)
size: (ao_extra_basis.ao_extra_num)
interface: ezfio, provider
[ao_extra_prim_num_max]
type: integer
doc: Maximum number of primitives
default: =maxval(extra_basis.ao_extra_prim_num)
default: =maxval(ao_extra_basis.ao_extra_prim_num)
interface: ezfio
[ao_extra_nucl]
type: integer
doc: Index of the nucleus on which the |ao_extra| is centered
size: (extra_basis.ao_extra_num)
size: (ao_extra_basis.ao_extra_num)
interface: ezfio, provider
[ao_extra_power]
type: integer
doc: Powers of x, y and z for each |ao_extra|
size: (extra_basis.ao_extra_num,3)
size: (ao_extra_basis.ao_extra_num,3)
interface: ezfio, provider
[ao_extra_coef]
type: double precision
doc: Primitive coefficients, read from input. Those should not be used directly, as the MOs are expressed on the basis of **normalized** ao_extras.
size: (extra_basis.ao_extra_num,extra_basis.ao_extra_prim_num_max)
size: (ao_extra_basis.ao_extra_num,ao_extra_basis.ao_extra_prim_num_max)
interface: ezfio, provider
[ao_extra_expo]
type: double precision
doc: Exponents for each primitive of each |ao_extra|
size: (extra_basis.ao_extra_num,extra_basis.ao_extra_prim_num_max)
size: (ao_extra_basis.ao_extra_num,ao_extra_basis.ao_extra_prim_num_max)
interface: ezfio, provider
[ao_extra_md5]
@ -70,18 +70,18 @@ default: true
[ao_extra_expo_im]
type: double precision
doc: imag part for Exponents for each primitive of each cGTOs |ao_extra|
size: (extra_basis.ao_extra_num,extra_basis.ao_extra_prim_num_max)
size: (ao_extra_basis.ao_extra_num,ao_extra_basis.ao_extra_prim_num_max)
interface: ezfio, provider
[ao_extra_expo_pw]
type: double precision
doc: plane wave part for each primitive GTOs |ao_extra|
size: (3,extra_basis.ao_extra_num,extra_basis.ao_extra_prim_num_max)
size: (3,ao_extra_basis.ao_extra_num,ao_extra_basis.ao_extra_prim_num_max)
interface: ezfio, provider
[ao_extra_expo_phase]
type: double precision
doc: phase shift for each primitive GTOs |ao_extra|
size: (3,extra_basis.ao_extra_num,extra_basis.ao_extra_prim_num_max)
size: (3,ao_extra_basis.ao_extra_num,ao_extra_basis.ao_extra_prim_num_max)
interface: ezfio, provider

View File

@ -12,4 +12,5 @@ program extra_basis
print*,'extra_nucl_coord = '
print*,extra_nucl_coord(i,1:3)
enddo
print*,ao_extra_num
end

View File

@ -1,2 +1,2 @@
extra_basis
ao_extra_basis
ao_one_e_ints

View File

@ -134,3 +134,56 @@ END_PROVIDER
! ---
subroutine get_ao_mixed_overlap(r_nucl,ao_mixed_overlap)
implicit none
BEGIN_DOC
! returns the overlap integrals between the AOs and the extra_AOs located at r_nucl
END_DOC
double precision, intent(in) :: r_nucl(extra_nucl_num,3)
double precision, intent(out):: ao_mixed_overlap(ao_extra_num,ao_num)
integer :: j,i,l,n, power_A(3), power_B(3), dim1
double precision :: A_center(3), B_center(3), alpha, beta
double precision :: overlap_x,overlap_y,overlap_z,overlap,c
dim1=100
ao_mixed_overlap = 0.d0
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
!$OMP overlap_x,overlap_y, overlap_z, overlap, &
!$OMP alpha, beta,i,j,n,l,c) &
!$OMP SHARED(r_nucl,ao_extra_power,ao_extra_prim_num, &
!$OMP ao_mixed_overlap,ao_extra_num,ao_extra_coef_normalized_ordered_transp,ao_extra_nucl, &
!$OMP ao_extra_expo_ordered_transp,dim1, &
!$OMP nucl_coord,ao_power,ao_prim_num, &
!$OMP ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
!$OMP ao_expo_ordered_transp)
do i = 1, ao_num
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
do j=1,ao_extra_num
A_center(1) = r_nucl( ao_extra_nucl(j), 1 )
A_center(2) = r_nucl( ao_extra_nucl(j), 2 )
A_center(3) = r_nucl( ao_extra_nucl(j), 3 )
power_A(1) = ao_extra_power( j, 1 )
power_A(2) = ao_extra_power( j, 2 )
power_A(3) = ao_extra_power( j, 3 )
do n = 1,ao_extra_prim_num(j)
alpha = ao_extra_expo_ordered_transp(n,j)
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
c = ao_extra_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
ao_mixed_overlap(j,i) += c * overlap
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
end

View File

@ -3,5 +3,48 @@ program extra_basis_int
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
! call test_overlap
call routine_test_pot_ne
end
subroutine test_overlap
implicit none
integer :: i,j
do i = 1, ao_extra_num
do j = 1, ao_extra_num
write(33,*)ao_extra_overlap(j,i)
enddo
enddo
end
subroutine test_overlap_mixed
implicit none
integer :: i,j
double precision, allocatable :: ao_mixed_overlap(:,:)
allocate(ao_mixed_overlap(ao_extra_num,ao_num))
call get_ao_mixed_overlap(extra_nucl_coord,ao_mixed_overlap)
do i = 1, ao_extra_num
do j = 1, ao_num
write(33,*)dabs(ao_extra_overlap_mixed(j,i)-ao_mixed_overlap(i,j))
write(*,*)ao_extra_overlap_mixed(j,i),ao_mixed_overlap(i,j),dabs(ao_extra_overlap_mixed(j,i)-ao_mixed_overlap(i,j))
enddo
enddo
end
subroutine routine_test_pot_ne
implicit none
integer :: i,j
double precision :: integral, C_center(3), mu_in
double precision :: NAI_pol_mult_erf_ao_extra
C_center(1) = 0.1d0
C_center(2) = -0.3d0
C_center(3) = 0.8d0
mu_in = 1.d10
do i = 1, ao_extra_num
do j = 1, ao_extra_num
integral = NAI_pol_mult_erf_ao_extra(i, j, mu_in, C_center)
write(33,*)j,i,integral
enddo
enddo
end

View File

@ -0,0 +1,93 @@
double precision function NAI_pol_mult_erf_ao_extra(i_ao, j_ao, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
! $\int_{-\infty}^{infty} dr \chi_i(r) \chi_j(r) \frac{\erf(\mu |r - R_C|)}{|r - R_C|}$.
!
!
! where $\chi_i(r)$ AND $\chi_j(r)$ belongs to the extra basis
END_DOC
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in
double precision :: A_center(3), B_center(3), integral, alpha, beta
double precision :: NAI_pol_mult_erf
num_A = ao_extra_nucl(i_ao)
power_A(1:3) = ao_extra_power(i_ao,1:3)
A_center(1:3) = extra_nucl_coord(num_A,1:3)
num_B = ao_extra_nucl(j_ao)
power_B(1:3) = ao_extra_power(j_ao,1:3)
B_center(1:3) = extra_nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_extra_basis_integrals
NAI_pol_mult_erf_ao_extra = 0.d0
do i = 1, ao_extra_prim_num(i_ao)
alpha = ao_extra_expo_ordered_transp(i,i_ao)
do j = 1, ao_extra_prim_num(j_ao)
beta = ao_extra_expo_ordered_transp(j,j_ao)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in,mu_in)
NAI_pol_mult_erf_ao_extra += integral * ao_extra_coef_normalized_ordered_transp(j,j_ao) * ao_extra_coef_normalized_ordered_transp(i,i_ao)
enddo
enddo
end function NAI_pol_mult_erf_ao_extra
! ---
double precision function NAI_pol_mult_erf_ao_extra_mixed(i_ao, j_ao, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
! $\int_{-\infty}^{infty} dr \chi_i(r) \chi_j(r) \frac{\erf(\mu |r - R_C|)}{|r - R_C|}$.
!
!
! where $\chi_i(r)$ belongs to the extra basis and $\chi_j(r)$ to the regular basis
END_DOC
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in
double precision :: A_center(3), B_center(3), integral, alpha, beta
double precision :: NAI_pol_mult_erf
! A = chi_i == extra basis
num_A = ao_extra_nucl(i_ao)
power_A(1:3) = ao_extra_power(i_ao,1:3)
A_center(1:3) = extra_nucl_coord(num_A,1:3)
! B = chi_j == regular basis
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = max(n_pt_max_integrals,n_pt_max_extra_basis_integrals)
NAI_pol_mult_erf_ao_extra_mixed = 0.d0
do i = 1, ao_extra_prim_num(i_ao)
alpha = ao_extra_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in,mu_in)
NAI_pol_mult_erf_ao_extra_mixed += integral * ao_coef_normalized_ordered_transp(j,j_ao) * ao_extra_coef_normalized_ordered_transp(i,i_ao)
enddo
enddo
end
! ---

View File

@ -0,0 +1,35 @@
program pouet
implicit none
! call ref_overlap
call ref_pot
end
subroutine ref_overlap
implicit none
integer :: i,j
do i = 1, ao_num
do j = 1, ao_num
write(34,*)ao_overlap(j,i)
enddo
enddo
end
subroutine ref_pot
implicit none
integer :: i,j
double precision :: integral, C_center(3), mu_in
double precision :: NAI_pol_mult_erf_ao
C_center(1) = 0.1d0
C_center(2) = -0.3d0
C_center(3) = 0.8d0
mu_in = 1.d10
do i = 1, ao_num
do j = 1, ao_num
integral = NAI_pol_mult_erf_ao(i, j, mu_in, C_center)
write(34,*)j,i,integral
enddo
enddo
end