10
1
mirror of https://github.com/pfloos/quack synced 2025-05-06 15:14:55 +02:00

first qsGW version + cleaner data allocation to avoid warnings

This commit is contained in:
Loris Burth 2025-04-16 17:54:18 +02:00
parent f7df08e82d
commit cdc1c25351
9 changed files with 918 additions and 8 deletions

View File

@ -0,0 +1,39 @@
subroutine complex_MOtoAO(nBas, nOrb, S, C, M_MOs, M_AOs)
! Perform MO to AO transformation of a matrix M_AOs for a given metric S
! and coefficients c
!
! M_AOs = S C M_MOs (S C).T
implicit none
integer, intent(in) :: nBas, nOrb
double precision, intent(in) :: S(nBas,nBas)
complex*16, intent(in) :: C(nBas,nOrb)
complex*16, intent(in) :: M_MOs(nOrb,nOrb)
complex*16, intent(out) :: M_AOs(nBas,nBas)
complex*16, allocatable :: SC(:,:),BSC(:,:),cS(:,:)
allocate(SC(nBas,nOrb), BSC(nOrb,nBas),cS(nBas,nBas))
cS(:,:) = (0d0,1d0)*S(:,:)
!SC = matmul(S, C)
!BSC = matmul(M_MOs, transpose(SC))
!M_AOs = matmul(SC, BSC)
call zgemm("N", "N", nBas, nOrb, nBas, 1.d0, &
cS(1,1), nBas, C(1,1), nBas, &
0.d0, SC(1,1), nBas)
call zgemm("N", "T", nOrb, nBas, nOrb, 1.d0, &
M_MOs(1,1), nOrb, SC(1,1), nBas, &
0.d0, BSC(1,1), nOrb)
call zgemm("N", "N", nBas, nBas, nOrb, 1.d0, &
SC(1,1), nBas, BSC(1,1), nOrb, &
0.d0, M_AOs(1,1), nBas)
deallocate(SC, BSC)
end subroutine

View File

@ -0,0 +1,24 @@
subroutine complex_complex_AOtoMO(nBas, nOrb, C, M_AOs, M_MOs)
! Perform AO to MO transformation of a matrix M_AOs for given coefficients c
! M_MOs = C.T M_AOs C
implicit none
integer, intent(in) :: nBas, nOrb
complex*16, intent(in) :: C(nBas,nOrb)
complex*16, intent(in) :: M_AOs(nBas,nBas)
complex*16, intent(out) :: M_MOs(nOrb,nOrb)
complex*16, allocatable :: AC(:,:)
complex*16, allocatable :: complex_C(:,:)
allocate(AC(nBas,nOrb))
AC = matmul(M_AOs, C)
M_MOs = matmul(transpose(C), AC)
deallocate(AC)
end subroutine

View File

@ -1,7 +1,7 @@
subroutine complex_RGW(dotest,docG0W0,doevGW,maxSCF,thresh,max_diis,doACFDT, &
subroutine complex_RGW(dotest,docG0W0,doevGW,doqsGW,maxSCF,thresh,max_diis,doACFDT, &
exchange_kernel,doXBS,dophBSE,dophBSE2,doppBSE,TDA_W,TDA,dBSE,dTDA,singlet,triplet, &
linearize,eta,doSRG,nNuc,ZNuc,rNuc,ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF, &
S,X,T,V,Hc,ERI_AO,ERI_MO,CAP_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
S,X,T,V,Hc,ERI_AO,ERI_MO,CAP_AO,CAP_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
! Restricted GW module
@ -12,7 +12,7 @@ subroutine complex_RGW(dotest,docG0W0,doevGW,maxSCF,thresh,max_diis,doACFDT,
logical,intent(in) :: dotest
logical,intent(in) :: docG0W0,doevGW
logical,intent(in) :: docG0W0,doevGW,doqsGW
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
@ -57,6 +57,7 @@ subroutine complex_RGW(dotest,docG0W0,doevGW,maxSCF,thresh,max_diis,doACFDT,
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
complex*16,intent(in) :: ERI_MO(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: CAP_AO(nOrb,nOrb)
complex*16,intent(in) :: CAP_MO(nOrb,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
complex*16,intent(in) :: dipole_int_MO(nOrb,nOrb,ncart)
@ -100,4 +101,24 @@ subroutine complex_RGW(dotest,docG0W0,doevGW,maxSCF,thresh,max_diis,doACFDT,
end if
!------------------------------------------------------------------------
! Perform qsGW calculation
!------------------------------------------------------------------------
if(doqsGW) then
call wall_time(start_GW)
call complex_qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2, &
TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet,eta,doSRG,nNuc,ZNuc,rNuc, &
ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO,ERI_MO, &
dipole_int_AO,dipole_int_MO,PHF,cHF,eHF, &
CAP_AO,CAP_MO)
call wall_time(end_GW)
t_GW = end_GW - start_GW
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for qsGW = ',t_GW,' seconds'
write(*,*)
end if
end subroutine

View File

@ -0,0 +1,99 @@
subroutine complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_e,Im_e,Om,rho,EcGM,Re_Sig,Im_Sig,Re_Z,Im_Z)
! Compute diagonal of the correlation part of the self-energy and the renormalization factor
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
double precision,intent(in) :: flow
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: Re_e(nBas)
double precision,intent(in) :: Im_e(nBas)
complex*16,intent(in) :: Om(nS)
complex*16,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,p,m
double precision :: eps
complex*16 :: num
double precision :: eta_tilde
double precision,allocatable :: Re_DS(:)
double precision,allocatable :: Im_DS(:)
complex*16 :: tmp
! Output variables
double precision,intent(out) :: Re_Sig(nBas)
double precision,intent(out) :: Im_Sig(nBas)
double precision,intent(out) :: Re_Z(nBas)
double precision,intent(out) :: Im_Z(nBas)
complex*16,intent(out) :: EcGM
! Initialize
allocate(Re_DS(nBas),Im_DS(nBas))
Re_Sig(:) = 0d0
Im_Sig(:) = 0d0
Re_DS(:) = 0d0
Im_DS(:) = 0d0
!----------------!
! GW self-energy !
!----------------!
! Occupied part of the correlation self-energy
do p=nC+1,nBas-nR
do i=nC+1,nO
do m=1,nS
eps = Re_e(p) - Re_e(i) + real(Om(m))
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
num = 2d0*rho(p,i,m)**2
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
eta_tilde/(eps**2+eta_tilde**2),kind=8)
Re_Sig(p) = Re_Sig(p) + real(tmp)
Im_Sig(p) = Im_Sig(p) + aimag(tmp)
tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
! Virtual part of the correlation self-energy
do p=nC+1,nBas-nR
do a=nO+1,nBas-nR
do m=1,nS
eps = Re_e(p) - Re_e(a) - real(Om(m))
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
num = 2d0*rho(p,a,m)**2
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
Re_Sig(p) = Re_Sig(p) + real(tmp)
Im_Sig(p) = Im_Sig(p) + aimag(tmp)
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
! Compute renormalization factor from derivative
Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
deallocate(Re_DS,Im_DS)
end subroutine

View File

@ -0,0 +1,178 @@
subroutine complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_e,Im_e,Om,rho,EcGM,Re_Sig,Im_Sig,Re_Z,Im_Z)
! Compute correlation part of the self-energy and the renormalization factor
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: Re_e(nOrb)
double precision,intent(in) :: Im_e(nOrb)
complex*16,intent(in) :: Om(nS)
complex*16,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
integer :: i,j,a,b
integer :: p,q,m
double precision :: eps,eta_tilde
complex*16 :: num,tmp
double precision, allocatable :: Re_DS(:)
double precision, allocatable :: Im_DS(:)
! Output variables
complex*16,intent(out) :: EcGM
double precision,intent(out) :: Re_Sig(nOrb,nOrb)
double precision,intent(out) :: Im_Sig(nOrb,nOrb)
double precision,intent(out) :: Re_Z(nOrb)
double precision,intent(out) :: Im_Z(nOrb)
!----------------!
! GW self-energy !
!----------------!
allocate(Re_DS(nBas),Im_DS(nBas))
Re_Sig(:,:) = 0d0
Im_Sig(:,:) = 0d0
! Occupied part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,i,q,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = Re_e(p) - Re_e(i) + real(Om(m))
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
num = 2d0*rho(p,i,m)*rho(q,i,m)
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
eta_tilde/(eps**2+eta_tilde**2),kind=8)
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,a,q,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
eps = Re_e(p) - Re_e(a) - real(Om(m))
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
num = 2d0*rho(p,a,m)*rho(q,a,m)
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
!------------------------!
! Renormalization factor !
!------------------------!
Re_DS(:) = 0d0
Im_DS(:) = 0d0
! Occupied part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,i,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = Re_e(p) - Re_e(i) + real(Om(m))
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
num = 2d0*rho(p,i,m)*rho(p,i,m)
tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,a,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
eps = Re_e(p) - Re_e(a) - real(Om(m))
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
num = 2d0*rho(p,a,m)*rho(p,a,m)
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Compute renormalization factor from derivative
Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
deallocate(Re_DS,Im_DS)
!!-------------------------------------!
!! Galitskii-Migdal correlation energy !
!!-------------------------------------!
!
! EcGM = 0d0
! do m=1,nS
! do a=nO+1,nOrb-nR
! do i=nC+1,nO
!
! eps = e(a) - e(i) + Om(m)
! num = 4d0*rho(a,i,m)*rho(a,i,m)
! EcGM = EcGM - num*eps/(eps**2 + eta**2)
!
! end do
! end do
! end do
!
end subroutine

View File

@ -14,7 +14,7 @@ subroutine complex_evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,d
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
complex*16,intent(in) :: ERHF
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS

388
src/GW/complex_qsRGW.f90 Normal file
View File

@ -0,0 +1,388 @@
subroutine complex_qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2, &
TDA_W,TDA,dBSE,dTDA,doppBSE,singlet,triplet,eta,doSRG,nNuc,ZNuc,rNuc, &
ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO, &
ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF, &
CAP_AO,CAP_MO)
! Perform a quasiparticle self-consistent GW calculation
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
double precision,intent(in) :: thresh
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: doXBS
logical,intent(in) :: dophBSE
logical,intent(in) :: dophBSE2
logical,intent(in) :: TDA_W
logical,intent(in) :: TDA
logical,intent(in) :: dBSE
logical,intent(in) :: dTDA
logical,intent(in) :: doppBSE
logical,intent(in) :: singlet
logical,intent(in) :: triplet
double precision,intent(in) :: eta
logical,intent(in) :: doSRG
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
complex*16,intent(in) :: ERHF
complex*16,intent(in) :: eHF(nOrb)
complex*16,intent(in) :: cHF(nBas,nOrb)
complex*16,intent(in) :: PHF(nBas,nBas)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: CAP_AO(nBas,nBas)
double precision,intent(inout):: CAP_MO(nBas,nBas)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
complex*16,intent(inout) :: ERI_MO(nOrb,nOrb,nOrb,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
complex*16,intent(inout) :: dipole_int_MO(nOrb,nOrb,ncart)
! Local variables
integer :: nSCF
integer :: nBas_Sq
integer :: ispin
integer :: ixyz
integer :: n_diis
complex*16 :: ET
complex*16 :: EV
complex*16 :: EJ
complex*16 :: EK
complex*16 :: EqsGW
complex*16 :: EW
complex*16 :: EcRPA
complex*16 :: EcBSE(nspin)
complex*16 :: EcGM
double precision :: Conv
double precision :: rcond
double precision,external :: complex_trace_matrix
complex*16 :: dipole(ncart)
double precision :: flow
logical :: dRPA_W = .true.
logical :: print_W = .false.
complex*16,allocatable :: err_diis(:,:)
complex*16,allocatable :: F_diis(:,:)
complex*16,allocatable :: Aph(:,:)
complex*16,allocatable :: Bph(:,:)
complex*16,allocatable :: Om(:)
complex*16,allocatable :: XpY(:,:)
complex*16,allocatable :: XmY(:,:)
complex*16,allocatable :: rho(:,:,:)
complex*16,allocatable :: c(:,:)
complex*16,allocatable :: cp(:,:)
complex*16,allocatable :: eGW(:)
complex*16,allocatable :: P(:,:)
complex*16,allocatable :: F(:,:)
complex*16,allocatable :: Fp(:,:)
complex*16,allocatable :: J(:,:)
complex*16,allocatable :: K(:,:)
complex*16,allocatable :: SigC(:,:)
complex*16,allocatable :: SigCp(:,:)
complex*16,allocatable :: Z(:)
complex*16,allocatable :: err(:,:)
! Hello world
write(*,*)
write(*,*)'*******************************'
write(*,*)'* Restricted qsGW Calculation *'
write(*,*)'*******************************'
write(*,*)
! Warning
write(*,*) '!! ERIs and CAP in MO basis will be overwritten in qsGW !!'
write(*,*)
! Stuff
nBas_Sq = nBas*nBas
! TDA for W
if(TDA_W) then
write(*,*) 'Tamm-Dancoff approximation for dynamical screening!'
write(*,*)
end if
! SRG regularization
flow = 500d0
if(doSRG) then
write(*,*) '*** SRG regularized qsGW scheme ***'
write(*,*)
end if
! Memory allocation
allocate(eGW(nOrb))
allocate(Z(nOrb))
allocate(c(nBas,nOrb))
allocate(cp(nOrb,nOrb))
allocate(Fp(nOrb,nOrb))
allocate(SigC(nOrb,nOrb))
allocate(P(nBas,nBas))
allocate(F(nBas,nBas))
allocate(J(nBas,nBas))
allocate(K(nBas,nBas))
allocate(err(nBas,nBas))
allocate(SigCp(nBas,nBas))
allocate(Aph(nS,nS))
allocate(Bph(nS,nS))
allocate(Om(nS))
allocate(XpY(nS,nS))
allocate(XmY(nS,nS))
allocate(rho(nOrb,nOrb,nS))
allocate(err_diis(nBas_Sq,max_diis))
allocate(F_diis(nBas_Sq,max_diis))
! Initialization
nSCF = -1
n_diis = 0
ispin = 1
Conv = 1d0
P(:,:) = PHF(:,:)
eGW(:) = eHF(:)
c(:,:) = cHF(:,:)
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
rcond = 0d0
!------------------------------------------------------------------------
! Main loop
!------------------------------------------------------------------------
do while(Conv > thresh .and. nSCF <= maxSCF)
! Increment
nSCF = nSCF + 1
! Build Hartree-exchange matrix
call complex_Hartree_matrix_AO_basis(nBas,P,ERI_AO,J)
call complex_exchange_matrix_AO_basis(nBas,P,ERI_AO,K)
! AO to MO transformation of two-electron integrals
do ixyz=1,ncart
call complex_AOtoMO(nBas,nOrb,c,dipole_int_AO(1,1,ixyz),dipole_int_MO(1,1,ixyz))
end do
call complex_AOtoMO_ERI_RHF(nBas,nOrb,c,ERI_AO,ERI_MO)
! Compute linear response
call complex_phRLR_A(ispin,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,eGW,ERI_MO,Aph)
if(.not.TDA_W) call complex_phRLR_B(ispin,dRPA_W,nOrb,nC,nO,nV,nR,nS,1d0,ERI_MO,Bph)
call complex_phRLR(TDA_W,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
if(print_W) call print_excitation_energies('phRPA@GW@RHF','singlet',nS,Om)
call complex_RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,rho)
if(doSRG) then
write(*,*) "SRG not implemented"
!call complex_RGW_SRG_self_energy(flow,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
else
call complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,real(eGW),aimag(eGW),Om,rho,&
EcGM,real(SigC),aimag(SigC),real(Z),aimag(Z))
end if
! Make correlation self-energy Hermitian and transform it back to AO basis
SigC = 0.5d0*(SigC + transpose(SigC))
call complex_MOtoAO(nBas,nOrb,S,c,SigC,SigCp)
! Solve the quasi-particle equation
F(:,:) = cmplx(Hc(:,:),CAP_AO(:,:),kind=8) + J(:,:) + 0.5d0*K(:,:) + SigCp(:,:)
if(nBas .ne. nOrb) then
call complex_complex_AOtoMO(nBas,nOrb,c(1,1),F(1,1),Fp(1,1))
call complex_MOtoAO(nBas,nOrb,S(1,1),c(1,1),Fp(1,1),F(1,1))
endif
! Compute commutator and convergence criteria
err = matmul(F,matmul(P,S)) - matmul(matmul(S,P),F)
if(nSCF > 1) Conv = maxval(abs(err))
! Kinetic energy
ET = complex_trace_matrix(nBas,matmul(P,T))
! Potential energy
EV = complex_trace_matrix(nBas,matmul(P,V))
! Hartree energy
EJ = 0.5d0*complex_trace_matrix(nBas,matmul(P,J))
! Exchange energy
EK = 0.25d0*complex_trace_matrix(nBas,matmul(P,K))
! CAP energy
EW = complex_trace_matrix(nBas,matmul(P,(0d0,1d0)*CAP_AO))
! Total energy
EqsGW = ET + EV + EJ + EK + EW
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call complex_DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,err_diis,F_diis,err,F)
end if
! Diagonalize Hamiltonian in AO basis
if(nBas .eq. nOrb) then
Fp = matmul(transpose(X),matmul(F,X))
cp(:,:) = Fp(:,:)
call complex_diagonalize_matrix(nOrb,cp,eGW)
c = matmul(X,cp)
else
Fp = matmul(transpose(c),matmul(F,c))
cp(:,:) = Fp(:,:)
call complex_diagonalize_matrix(nOrb,cp,eGW)
c = matmul(c,cp)
endif
call complex_complex_AOtoMO(nBas,nOrb,c,SigCp,SigC)
! Density matrix
P(:,:) = 2d0*matmul(c(:,1:nO),transpose(c(:,1:nO)))
! Print results
!call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
call print_complex_qsRGW(nBas,nOrb,nO,nSCF,Conv,thresh,eHF,eGW,c,SigC,Z, &
ENuc,ET,EV,EW,EJ,EK,EcGM,EcRPA,EqsGW,dipole)
end do
!------------------------------------------------------------------------
! End main loop
!------------------------------------------------------------------------
! Did it actually converge?
! if(nSCF == maxSCF+1) then
!
! write(*,*)
! write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
! write(*,*)' Convergence failed '
! write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
! write(*,*)
!
! deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis)
! stop
!
! end if
!
!! Deallocate memory
!
! deallocate(c,cp,P,F,Fp,J,K,SigC,SigCp,Z,Om,XpY,XmY,rho,err,err_diis,F_diis)
!
!! Perform BSE calculation
!
! if(dophBSE) then
!
! call RGW_phBSE(dophBSE2,exchange_kernel,TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta, &
! nOrb,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eGW,eGW,EcBSE)
!
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
!
!! Compute the BSE correlation energy via the adiabatic connection
!
! if(doACFDT) then
!
! call RGW_phACFDT(exchange_kernel,doXBS,TDA_W,TDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,ERI_MO,eGW,eGW,EcBSE)
!
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
! write(*,'(2X,A50,F20.10,A3)') 'AC@BSE@qsGW@RHF total energy = ',ENuc + EqsGW + sum(EcBSE),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
!
! end if
!
! end if
!
! if(doppBSE) then
!
! call RGW_ppBSE(TDA_W,TDA,dBSE,dTDA,singlet,triplet,eta,nOrb,nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eHF,eGW,EcBSE)
!
! write(*,*)
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (singlet) = ',EcBSE(1),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy (triplet) = ',EcBSE(2),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF correlation energy = ',sum(EcBSE),' au'
! write(*,'(2X,A50,F20.10,A3)') 'Tr@ppBSE@qsGW@RHF total energy = ',ENuc + ERHF + sum(EcBSE),' au'
! write(*,*)'-------------------------------------------------------------------------------'
! write(*,*)
!
! end if
!
!! Testing zone
!
! if(dotest) then
!
! call dump_test_value('R','qsGW correlation energy',EcRPA)
! call dump_test_value('R','qsGW HOMO energy',eGW(nO))
! call dump_test_value('R','qsGW LUMO energy',eGW(nO+1))
!
! end if
!
end subroutine

View File

@ -0,0 +1,148 @@
! ---
subroutine print_complex_qsRGW(nBas, nOrb, nO, nSCF, Conv, thresh, eHF, eGW, c, SigC, &
Z, ENuc, ET, EV,EW, EJ, EK, EcGM, EcRPA, EqsGW, dipole)
! Print useful information about qsRGW calculation
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas, nOrb
integer,intent(in) :: nO
integer,intent(in) :: nSCF
double precision,intent(in) :: ENuc
complex*16,intent(in) :: ET
complex*16,intent(in) :: EV
complex*16,intent(in) :: EW
complex*16,intent(in) :: EJ
complex*16,intent(in) :: EK
complex*16,intent(in) :: EcGM
complex*16,intent(in) :: EcRPA
double precision,intent(in) :: Conv
double precision,intent(in) :: thresh
complex*16,intent(in) :: eHF(nOrb)
complex*16,intent(in) :: eGW(nOrb)
complex*16,intent(in) :: c(nBas,nOrb)
complex*16,intent(in) :: SigC(nOrb,nOrb)
complex*16,intent(in) :: Z(nOrb)
complex*16,intent(in) :: EqsGW
complex*16,intent(in) :: dipole(ncart)
! Local variables
logical :: dump_orb = .false.
integer :: p,ixyz,HOMO,LUMO
complex*16 :: Gap
double precision,external :: complex_trace_matrix
! Output variables
! HOMO and LUMO
HOMO = maxloc(real(eGW(1:nO)),1)
LUMO = minloc(real(eGW(nO+1:nBas)),1) + nO
Gap = eGW(LUMO)-eGW(HOMO)
! Compute energies
! Dump results
write(*,*)'-------------------------------------------------------------------------------'
if(nSCF < 10) then
write(*,'(1X,A20,I1,A1,I1,A17)')' Self-consistent qsG',nSCF,'W',nSCF,'@cRHF calculation'
elseif(nSCF < 100) then
write(*,'(1X,A20,I2,A1,I2,A17)')' Self-consistent qsG',nSCF,'W',nSCF,'@cRHF calculation'
else
write(*,'(1X,A20,I3,A1,I3,A17)')' Self-consistent qsG',nSCF,'W',nSCF,'@cRHF calculation'
end if
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','Re(e_HF (eV))','|','Re(Sig_GW) (eV)','|','Re(Z)','|','Re(e_GW) (eV)','|'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
'|','#','|','Im(e_HF (eV))','|','Im(Sig_GW) (eV)','|','Im(Z)','|','Im(e_GW) (eV)','|'
write(*,*)'-------------------------------------------------------------------------------'
do p=1,nOrb
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',real(eHF(p))*HaToeV,'|',real(SigC(p,p))*HaToeV,'|',real(Z(p)),'|',real(eGW(p))*HaToeV,'|'
write(*,'(1X,A1,1X,I3,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X,F15.6,1X,A1,1X)') &
'|',p,'|',aimag(eHF(p))*HaToeV,'|',aimag(SigC(p,p))*HaToeV,'|',aimag(Z(p)),'|',aimag(eGW(p))*HaToeV,'|'
write(*,*)'-------------------------------------------------------------------------------'
if(p==nO) then
write(*,*)'-------------------------------------------------------------------------------'
end if
end do
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A10,I3)') 'Iteration ',nSCF
write(*,'(2X,A14,F15.5)')'Convergence = ',Conv
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF HOMO real energy = ',real(eGW(HOMO))*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF HOMO imag energy = ',aimag(eGW(HOMO))*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF LUMO real energy = ',real(eGW(LUMO))*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF LUMO imag energy = ',aimag(eGW(LUMO))*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF HOMO-LUMO gap = ',real(Gap)*HaToeV,' eV'
write(*,'(2X,A60,F15.6,A3)') 'qsGW@RHF HOMO-LUMO gap = ',aimag(Gap)*HaToeV,' eV'
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@RHF total real energy = ',ENuc + real(EqsGW),' au'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@RHF total imag energy = ',aimag(EqsGW),' au'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@RHF exchange energy = ',real(EK),' au'
write(*,'(2X,A60,F15.6,A3)') ' qsGW@RHF exchange energy = ',aimag(EK),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Dump results for final iteration
if(Conv < thresh) then
write(*,*)
write(*,'(A50)') '---------------------------------------'
write(*,'(A33)') ' Summary '
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' One-electron energy = ',real(ET) + real(EV) + real(EW),' au'
write(*,'(A33,1X,F16.10,A3)') ' One-electron energy = ',aimag(ET) + aimag(EV) + aimag(EW),' au'
write(*,'(A33,1X,F16.10,A3)') ' Kinetic energy = ',real(ET),' au'
write(*,'(A33,1X,F16.10,A3)') ' Kinetic energy = ',aimag(ET),' au'
write(*,'(A33,1X,F16.10,A3)') ' Potential energy = ',real(EV),' au'
write(*,'(A33,1X,F16.10,A3)') ' Potential energy = ',aimag(EV),' au'
write(*,'(A33,1X,F16.10,A3)') ' CAP energy = ',real(EW),' au'
write(*,'(A33,1X,F16.10,A3)') ' CAP energy = ',aimag(EW),' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Two-electron energy = ',real(EJ + EK),' au'
write(*,'(A33,1X,F16.10,A3)') ' Two-electron energy = ',aimag(EJ + EK),' au'
write(*,'(A33,1X,F16.10,A3)') ' Hartree energy = ',real(EJ),' au'
write(*,'(A33,1X,F16.10,A3)') ' Hartree energy = ',aimag(EJ),' au'
write(*,'(A33,1X,F16.10,A3)') ' Exchange energy = ',real(EK),' au'
write(*,'(A33,1X,F16.10,A3)') ' Exchange energy = ',aimag(EK),' au'
write(*,'(A33,1X,F16.10,A3)') ' Correlation energy = ',real(EcGM),' au'
write(*,'(A33,1X,F16.10,A3)') ' Correlation energy = ',aimag(EcGM),' au'
write(*,'(A50)') '---------------------------------------'
write(*,'(A33,1X,F16.10,A3)') ' Electronic energy = ',real(EqsGW),' au'
write(*,'(A33,1X,F16.10,A3)') ' Electronic energy = ',aimag(EqsGW),' au'
write(*,'(A33,1X,F16.10,A3)') ' Nuclear repulsion = ',ENuc,' au'
write(*,'(A33,1X,F16.10,A3)') ' qsRGW energy = ',ENuc + real(EqsGW),' au'
write(*,'(A33,1X,F16.10,A3)') ' qsRGW energy = ',aimag(EqsGW),' au'
write(*,'(A50)') '---------------------------------------'
write(*,*)
if(dump_orb) then
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' Restricted qsGW orbital coefficients'
write(*,'(A50)') '---------------------------------------'
call complex_matout(nBas, nOrb, c)
write(*,*)
end if
write(*,'(A50)') '---------------------------------------'
write(*,'(A50)') ' Restricted qsGW orbital energies (au) '
write(*,'(A50)') '---------------------------------------'
call complex_vecout(nOrb, eGW)
write(*,*)
end if
end subroutine

View File

@ -137,16 +137,28 @@ subroutine RQuAcK(working_dir,use_gpu,dotest,doRHF,doROHF,docRHF,
allocate(complex_cHF(nBas,nOrb))
allocate(complex_FHF(nBas,nBas))
allocate(complex_dipole_int_MO(nOrb,nOrb,ncart))
allocate(dipole_int_MO(0,0,0))
allocate(complex_ERI_MO(nOrb,nOrb,nOrb,nOrb))
if (doCAP) allocate(complex_CAP_MO(nOrb,nOrb))
allocate(CAP_MO(0,0))
if (doCAP) then
allocate(complex_CAP_MO(nOrb,nOrb))
else
allocate(complex_CAP_MO(0,0))
end if
else
allocate(PHF(nBas,nBas))
allocate(eHF(nOrb))
allocate(cHF(nBas,nOrb))
allocate(FHF(nBas,nBas))
allocate(dipole_int_MO(nOrb,nOrb,ncart))
allocate(complex_dipole_int_MO(0,0,0))
allocate(ERI_MO(nOrb,nOrb,nOrb,nOrb))
if (doCAP) allocate(CAP_MO(nOrb,nOrb))
allocate(complex_CAP_MO(0,0))
if (doCAP) then
allocate(CAP_MO(nOrb,nOrb))
else
allocate(CAP_MO(0,0))
end if
end if
allocate(ERI_AO(nBas,nBas,nBas,nBas))
@ -418,10 +430,11 @@ doGF = doG0F2 .or. doevGF2 .or. doqsGF2 .or. doufG0F02 .or. doG0F3 .or. doevGF3
if(doGW .and. docRHF) then
call wall_time(start_GW)
call complex_RGW(dotest,docG0W0,doevGW,maxSCF_GW,thresh_GW,max_diis_GW, &
call complex_RGW(dotest,docG0W0,doevGW,doqsGW,maxSCF_GW,thresh_GW,max_diis_GW, &
doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,doppBSE,TDA_W,TDA,dBSE,dTDA,singlet,triplet, &
lin_GW,eta_GW,reg_GW,nNuc,ZNuc,rNuc,ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T, &
V,Hc,ERI_AO,complex_ERI_MO,complex_CAP_MO,dipole_int_AO,complex_dipole_int_MO,complex_PHF,complex_cHF,complex_eHF)
V,Hc,ERI_AO,complex_ERI_MO,CAP_AO,complex_CAP_MO,dipole_int_AO,&
complex_dipole_int_MO,complex_PHF,complex_cHF,complex_eHF)
call wall_time(end_GW)
t_GW = end_GW - start_GW