10
1
mirror of https://github.com/pfloos/quack synced 2025-05-06 15:14:55 +02:00
QuAcK/src/GW/complex_RGW_self_energy.f90

179 lines
5.0 KiB
Fortran

subroutine complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_e,Im_e,Om,rho,EcGM,Re_Sig,Im_Sig,Re_Z,Im_Z)
! Compute correlation part of the self-energy and the renormalization factor
implicit none
include 'parameters.h'
! Input variables
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: Re_e(nOrb)
double precision,intent(in) :: Im_e(nOrb)
complex*16,intent(in) :: Om(nS)
complex*16,intent(in) :: rho(nOrb,nOrb,nS)
! Local variables
integer :: i,j,a,b
integer :: p,q,m
double precision :: eps,eta_tilde
complex*16 :: num,tmp
double precision, allocatable :: Re_DS(:)
double precision, allocatable :: Im_DS(:)
! Output variables
complex*16,intent(out) :: EcGM
double precision,intent(out) :: Re_Sig(nOrb,nOrb)
double precision,intent(out) :: Im_Sig(nOrb,nOrb)
double precision,intent(out) :: Re_Z(nOrb)
double precision,intent(out) :: Im_Z(nOrb)
!----------------!
! GW self-energy !
!----------------!
allocate(Re_DS(nBas),Im_DS(nBas))
Re_Sig(:,:) = 0d0
Im_Sig(:,:) = 0d0
! Occupied part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,i,q,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = Re_e(p) - Re_e(i) + real(Om(m))
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
num = 2d0*rho(p,i,m)*rho(q,i,m)
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
eta_tilde/(eps**2+eta_tilde**2),kind=8)
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the correlation self-energy
!$OMP PARALLEL &
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,a,q,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do q=nC+1,nOrb-nR
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
eps = Re_e(p) - Re_e(a) - real(Om(m))
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
num = 2d0*rho(p,a,m)*rho(q,a,m)
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
!------------------------!
! Renormalization factor !
!------------------------!
Re_DS(:) = 0d0
Im_DS(:) = 0d0
! Occupied part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,i,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do i=nC+1,nO
eps = Re_e(p) - Re_e(i) + real(Om(m))
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
num = 2d0*rho(p,i,m)*rho(p,i,m)
tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Virtual part of the renormalization factor
!$OMP PARALLEL &
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,Re_e,Im_e,Om) &
!$OMP PRIVATE(m,a,p,eps,num,eta_tilde,tmp) &
!$OMP DEFAULT(NONE)
!$OMP DO
do p=nC+1,nOrb-nR
do m=1,nS
do a=nO+1,nOrb-nR
eps = Re_e(p) - Re_e(a) - real(Om(m))
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
num = 2d0*rho(p,a,m)*rho(p,a,m)
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8)
Re_DS(p) = Re_DS(p) + real(tmp)
Im_DS(p) = Im_DS(p) + aimag(tmp)
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
! Compute renormalization factor from derivative
Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
deallocate(Re_DS,Im_DS)
!!-------------------------------------!
!! Galitskii-Migdal correlation energy !
!!-------------------------------------!
!
! EcGM = 0d0
! do m=1,nS
! do a=nO+1,nOrb-nR
! do i=nC+1,nO
!
! eps = e(a) - e(i) + Om(m)
! num = 4d0*rho(a,i,m)*rho(a,i,m)
! EcGM = EcGM - num*eps/(eps**2 + eta**2)
!
! end do
! end do
! end do
!
end subroutine