mirror of
https://github.com/pfloos/quack
synced 2025-05-06 15:14:55 +02:00
Added SRG for complex GW methods
This commit is contained in:
parent
62f331af9e
commit
179a0835b3
@ -71,7 +71,7 @@ subroutine RGW_SRG_self_energy(flow,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,SigC,
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! Virtual part of the correlation self-energy
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(SigC,rho,s,nS,nC,nO,nR,nOrb,e,Om) &
|
||||
!$OMP PRIVATE(m,a,q,p,Dpam,Dqam) &
|
||||
|
@ -130,7 +130,7 @@ subroutine RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
Z(:) = 1d0/(1d0 - Z(:))
|
||||
|
||||
!-------------------------------------!
|
||||
@ -149,5 +149,4 @@ subroutine RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine
|
||||
|
@ -64,11 +64,16 @@ subroutine complex_RGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,Re_eHF,Im_eHF
|
||||
|
||||
nIt = nIt + 1
|
||||
|
||||
if(doSRG) then
|
||||
|
||||
call complex_RGW_SigC_dSigC(p,eta,nBas,nC,nO,nV,nR,nS,&
|
||||
call complex_RGW_SRG_SigC_dSigC(flow,p,eta,nBas,nC,nO,nV,nR,nS,&
|
||||
Re_w,Im_w,Re_eOld,Im_eOld,Om,rho,&
|
||||
Re_SigC,Im_SigC,Re_dSigC,Im_dSigC)
|
||||
|
||||
else
|
||||
call complex_RGW_SigC_dSigC(p,eta,nBas,nC,nO,nV,nR,nS,&
|
||||
Re_w,Im_w,Re_eOld,Im_eOld,Om,rho,&
|
||||
Re_SigC,Im_SigC,Re_dSigC,Im_dSigC)
|
||||
end if
|
||||
Re_f = Re_w - Re_eHF(p) - Re_SigC
|
||||
Im_f = Im_w - Im_eHF(p) - Im_SigC
|
||||
Re_df = (1d0 - Re_dSigC)/((1d0 - Re_dSigC)**2 + Im_dSigC**2)
|
||||
|
88
src/GW/complex_RGW_SRG_SigC_dSigC.f90
Normal file
88
src/GW/complex_RGW_SRG_SigC_dSigC.f90
Normal file
@ -0,0 +1,88 @@
|
||||
subroutine complex_RGW_SRG_SigC_dSigC(flow,p,eta,nBas,nC,nO,nV,nR,nS,Re_w,Im_w,Re_e,Im_e,Om,rho,Re_SigC,Im_SigC,Re_DS,Im_DS)
|
||||
|
||||
! Complute diagonal of the correlation part of the self-energy and its derivative fully complex
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: p
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: flow
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
double precision,intent(in) :: Re_e(nBas)
|
||||
double precision,intent(in) :: Im_e(nBas)
|
||||
double precision,intent(in) :: Re_w
|
||||
double precision,intent(in) :: Im_w
|
||||
complex*16,intent(in) :: Om(nS)
|
||||
complex*16,intent(in) :: rho(nBas,nBas,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,m
|
||||
double precision :: eps,s
|
||||
double precision :: eta_tilde
|
||||
complex*16 :: num
|
||||
complex*16 :: tmp
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Re_SigC
|
||||
double precision,intent(out) :: Im_SigC
|
||||
double precision,intent(out) :: Re_DS
|
||||
double precision,intent(out) :: Im_DS
|
||||
|
||||
! Initialize
|
||||
Re_SigC = 0d0
|
||||
Im_SigC = 0d0
|
||||
Re_DS = 0d0
|
||||
Im_DS = 0d0
|
||||
s = flow
|
||||
|
||||
! Compute self energy and its derivative
|
||||
|
||||
! Occupied part
|
||||
|
||||
do i=nC+1,nO
|
||||
do m=1,nS
|
||||
eps = Re_w - Re_e(i) + real(Om(m))
|
||||
eta_tilde = eta - Im_w + Im_e(i) - aimag(Om(m))
|
||||
num = 2d0*rho(p,i,m)**2*(1d0 - exp(-2d0*s*(eps**2 + eta_tilde**2)))
|
||||
|
||||
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
|
||||
eta_tilde/(eps**2 + eta_tilde**2),kind=8)
|
||||
Re_SigC = Re_SigC + real(tmp)
|
||||
Im_SigC = Im_SigC + aimag(tmp)
|
||||
|
||||
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
||||
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
||||
Re_DS = Re_DS + real(tmp)
|
||||
Im_DS = Im_DS + aimag(tmp)
|
||||
end do
|
||||
end do
|
||||
|
||||
! Virtual part
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
do m=1,nS
|
||||
eps = Re_w - Re_e(a) - real(Om(m))
|
||||
eta_tilde = eta + Im_w - Im_e(a) - aimag(Om(m))
|
||||
num = 2d0*rho(p,a,m)**2*(1d0 - exp(-2d0*s*(eps**2 + eta_tilde**2)))
|
||||
|
||||
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
|
||||
Re_SigC = Re_SigC + real(tmp)
|
||||
Im_SigC = Im_SigC + aimag(tmp)
|
||||
|
||||
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
||||
2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
||||
Re_DS = Re_DS + real(tmp)
|
||||
Im_DS = Im_DS + aimag(tmp)
|
||||
end do
|
||||
end do
|
||||
end subroutine
|
193
src/GW/complex_RGW_SRG_self_energy.f90
Normal file
193
src/GW/complex_RGW_SRG_self_energy.f90
Normal file
@ -0,0 +1,193 @@
|
||||
subroutine complex_RGW_SRG_self_energy(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
|
||||
|
||||
! Compute correlation part of the self-energy and the renormalization factor
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: flow
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nOrb
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
complex*16,intent(in) :: e(nOrb)
|
||||
complex*16,intent(in) :: Om(nS)
|
||||
complex*16,intent(in) :: rho(nOrb,nOrb,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,a,b
|
||||
integer :: p,q,m
|
||||
double precision :: eps_p,eps_q,eta_tilde_p,eta_tilde_q
|
||||
double precision :: eps,eta_tilde,s
|
||||
complex*16 :: num,tmp
|
||||
double precision,allocatable :: Re_DS(:)
|
||||
double precision,allocatable :: Im_DS(:)
|
||||
double precision,allocatable :: Re_Sig(:,:)
|
||||
double precision,allocatable :: Im_Sig(:,:)
|
||||
double precision,allocatable :: Re_Z(:)
|
||||
double precision,allocatable :: Im_Z(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
complex*16,intent(out) :: EcGM
|
||||
complex*16,intent(out) :: Sig(nOrb,nOrb)
|
||||
complex*16,intent(out) :: Z(nOrb)
|
||||
|
||||
!----------------!
|
||||
! GW self-energy !
|
||||
!----------------!
|
||||
allocate(Re_DS(nOrb),Im_DS(nOrb),Re_Z(nOrb),Im_Z(nOrb),Re_Sig(nOrb,nOrb),Im_Sig(nOrb,nOrb))
|
||||
|
||||
Re_Sig(:,:) = 0d0
|
||||
Im_Sig(:,:) = 0d0
|
||||
Re_DS(:) = 0d0
|
||||
Im_DS(:) = 0d0
|
||||
s = flow
|
||||
|
||||
! Occupied part of the correlation self-energy
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om,s) &
|
||||
!$OMP PRIVATE(m,i,q,p,eps_p,eps_q,num,eta_tilde_p,eta_tilde_q,tmp) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO
|
||||
do q=nC+1,nOrb-nR
|
||||
do p=nC+1,nOrb-nR
|
||||
do m=1,nS
|
||||
do i=nC+1,nO
|
||||
eps_p = real(e(p)) - real(e(i)) + real(Om(m))
|
||||
eps_q = real(e(q)) - real(e(i)) + real(Om(m))
|
||||
eta_tilde_p = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m))
|
||||
eta_tilde_q = eta - aimag(e(q)) + aimag(e(i)) - aimag(Om(m))
|
||||
num = 2d0*rho(p,i,m)*rho(q,i,m)*(1d0 - exp(-s*(eps_p**2+eta_tilde_p**2 + eps_q**2 + eta_tilde_q**2)))
|
||||
tmp = num*cmplx((eps_p + eps_q)/(eps_p**2 + eps_q**2 + eta_tilde_p**2 + eta_tilde_q**2),&
|
||||
(eta_tilde_p + eta_tilde_q)/(eps_p**2 + eps_q**2 + eta_tilde_p**2 + eta_tilde_q**2),kind=8)
|
||||
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
|
||||
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! Virtual part of the correlation self-energy
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om,s) &
|
||||
!$OMP PRIVATE(m,a,q,p,eps_p,eps_q,num,eta_tilde_p,eta_tilde_q,tmp) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO
|
||||
do q=nC+1,nOrb-nR
|
||||
do p=nC+1,nOrb-nR
|
||||
do m=1,nS
|
||||
do a=nO+1,nOrb-nR
|
||||
|
||||
eps_p = real(e(p)) - real(e(a)) - real(Om(m))
|
||||
eps_q = real(e(q)) - real(e(a)) - real(Om(m))
|
||||
eta_tilde_p = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m))
|
||||
eta_tilde_q = eta + aimag(e(q)) - aimag(e(a)) - aimag(Om(m))
|
||||
num = 2d0*rho(p,a,m)*rho(q,a,m)*(1d0 - exp(-s*(eps_p**2+eta_tilde_p**2 + eps_q**2 + eta_tilde_q**2)))
|
||||
tmp = num*cmplx((eps_p +eps_q)/(eps_p**2+eta_tilde_p**2 + eps_q**2 + eta_tilde_q**2),&
|
||||
-(eta_tilde_p + eta_tilde_q)/(eps_p**2+eta_tilde_p**2 + eps_q**2 + eta_tilde_q**2),kind=8)
|
||||
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
|
||||
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!------------------------!
|
||||
! Renormalization factor !
|
||||
!------------------------!
|
||||
|
||||
!Occupied part of the renormalization factor
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om,s) &
|
||||
!$OMP PRIVATE(m,i,p,eps,num,eta_tilde,tmp) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO
|
||||
do p=nC+1,nOrb-nR
|
||||
do m=1,nS
|
||||
do i=nC+1,nO
|
||||
eps = real(e(p)) - real(e(i)) + real(Om(m))
|
||||
eta_tilde = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m))
|
||||
num = 2d0*rho(p,i,m)*rho(p,i,m)*(1d0-exp(-2d0*s*(eps**2+eta_tilde**2)))
|
||||
tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
||||
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
||||
Re_DS(p) = Re_DS(p) + real(tmp)
|
||||
Im_DS(p) = Im_DS(p) + aimag(tmp)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! Virtual part of the renormalization factor
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om,s) &
|
||||
!$OMP PRIVATE(m,a,p,eps,num,eta_tilde,tmp) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO
|
||||
do p=nC+1,nOrb-nR
|
||||
do m=1,nS
|
||||
do a=nO+1,nOrb-nR
|
||||
|
||||
eps = real(e(p)) - real(e(a)) - real(Om(m))
|
||||
eta_tilde = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m))
|
||||
num = 2d0*rho(p,a,m)*rho(p,a,m)*(1d0-exp(-2d0*s*(eps**2+eta_tilde**2)))
|
||||
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
||||
2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
||||
Re_DS(p) = Re_DS(p) + real(tmp)
|
||||
Im_DS(p) = Im_DS(p) + aimag(tmp)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! Compute renormalization factor from derivative
|
||||
Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
|
||||
Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
|
||||
|
||||
Z = cmplx(Re_Z,Im_Z,kind=8)
|
||||
Sig = cmplx(Re_Sig,Im_Sig,kind=8)
|
||||
|
||||
deallocate(Re_DS)
|
||||
deallocate(Im_DS)
|
||||
deallocate(Re_Z)
|
||||
deallocate(Im_Z)
|
||||
deallocate(Re_Sig)
|
||||
deallocate(Im_Sig)
|
||||
|
||||
!!-------------------------------------!
|
||||
!! Galitskii-Migdal correlation energy !
|
||||
!!-------------------------------------!
|
||||
!
|
||||
! EcGM = 0d0
|
||||
! do m=1,nS
|
||||
! do a=nO+1,nOrb-nR
|
||||
! do i=nC+1,nO
|
||||
!
|
||||
! eps = e(a) - e(i) + Om(m)
|
||||
! num = 4d0*rho(a,i,m)*rho(a,i,m)
|
||||
! EcGM = EcGM - num*eps/(eps**2 + eta**2)
|
||||
!
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
!
|
||||
end subroutine
|
@ -24,7 +24,7 @@ subroutine complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,p,m
|
||||
double precision :: eps
|
||||
double precision :: eps,s
|
||||
complex*16 :: num
|
||||
double precision :: eta_tilde
|
||||
double precision,allocatable :: Re_DS(:)
|
||||
@ -46,6 +46,8 @@ subroutine complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re
|
||||
Re_DS(:) = 0d0
|
||||
Im_DS(:) = 0d0
|
||||
|
||||
s = flow
|
||||
|
||||
!----------------!
|
||||
! GW self-energy !
|
||||
!----------------!
|
||||
@ -56,7 +58,7 @@ subroutine complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re
|
||||
do m=1,nS
|
||||
eps = Re_e(p) - Re_e(i) + real(Om(m))
|
||||
eta_tilde = eta - Im_e(p) + Im_e(i) - aimag(Om(m))
|
||||
num = 2d0*rho(p,i,m)**2
|
||||
num = 2d0*rho(p,i,m)**2*(1d0 - exp(-2d0*s*(eps**2 + eta_tilde**2)))
|
||||
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
|
||||
eta_tilde/(eps**2+eta_tilde**2),kind=8)
|
||||
Re_Sig(p) = Re_Sig(p) + real(tmp)
|
||||
@ -78,7 +80,7 @@ subroutine complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re
|
||||
|
||||
eps = Re_e(p) - Re_e(a) - real(Om(m))
|
||||
eta_tilde = eta + Im_e(p) - Im_e(a) - aimag(Om(m))
|
||||
num = 2d0*rho(p,a,m)**2
|
||||
num = 2d0*rho(p,a,m)**2*(1d0 - exp(-2d0*s*(eps**2 + eta_tilde**2)))
|
||||
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
|
||||
-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
|
||||
Re_Sig(p) = Re_Sig(p) + real(tmp)
|
||||
|
@ -41,7 +41,7 @@ subroutine complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Si
|
||||
!----------------!
|
||||
! GW self-energy !
|
||||
!----------------!
|
||||
allocate(Re_DS(nBas),Im_DS(nBas),Re_Z(nOrb),Im_Z(nOrb),Re_Sig(nOrb,nOrb),Im_Sig(nOrb,nOrb))
|
||||
allocate(Re_DS(nOrb),Im_DS(nOrb),Re_Z(nOrb),Im_Z(nOrb),Re_Sig(nOrb,nOrb),Im_Sig(nOrb,nOrb))
|
||||
|
||||
Re_Sig(:,:) = 0d0
|
||||
Im_Sig(:,:) = 0d0
|
||||
|
@ -94,9 +94,7 @@ subroutine complex_cRG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,
|
||||
flow = 500d0
|
||||
|
||||
if(doSRG) then
|
||||
! Not implemented
|
||||
write(*,*) '*** SRG regularized G0W0 scheme ***'
|
||||
write(*,*) '!!! No SRG with cRG0W0 !!!'
|
||||
write(*,*)
|
||||
|
||||
end if
|
||||
@ -126,8 +124,11 @@ subroutine complex_cRG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,
|
||||
!------------------------!
|
||||
! Compute GW self-energy !
|
||||
!------------------------!
|
||||
if(doSRG) then
|
||||
call complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_eHF,Im_eHF,Om,rho,EcGM,Re_SigC,Im_SigC,Re_Z,Im_Z)
|
||||
else
|
||||
call complex_RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_eHF,Im_eHF,Om,rho,EcGM,Re_SigC,Im_SigC,Re_Z,Im_Z)
|
||||
|
||||
end if
|
||||
!-----------------------------------!
|
||||
! Solve the quasi-particle equation !
|
||||
!-----------------------------------!
|
||||
|
@ -146,11 +146,14 @@ subroutine complex_evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,d
|
||||
|
||||
call complex_RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI,XpY,rho)
|
||||
|
||||
! Compute correlation part of the self-energy
|
||||
! Implement here the srg version if(doSRG) .. complex_RGW_SRG_self_energy_diag
|
||||
call complex_RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_eGW,Im_eGW,Om,rho,&
|
||||
if(doSRG) then
|
||||
call complex_RGW_SRG_self_energy_diag(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_eGW,Im_eGW,Om,rho,&
|
||||
EcGM,Re_SigC,Im_SigC,Re_Z,Im_Z)
|
||||
|
||||
else
|
||||
call complex_RGW_self_energy_diag(eta,nBas,nOrb,nC,nO,nV,nR,nS,Re_eGW,Im_eGW,Om,rho,&
|
||||
EcGM,Re_SigC,Im_SigC,Re_Z,Im_Z)
|
||||
end if
|
||||
|
||||
! Solve the quasi-particle equation
|
||||
|
||||
if(linearize) then
|
||||
|
@ -213,10 +213,10 @@ subroutine complex_qsRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,d
|
||||
if(print_W) call print_excitation_energies('phRPA@GW@RHF','singlet',nS,Om)
|
||||
|
||||
call complex_RGW_excitation_density(nOrb,nC,nO,nR,nS,ERI_MO,XpY,rho)
|
||||
|
||||
|
||||
if(doSRG) then
|
||||
write(*,*) "SRG not implemented"
|
||||
!call complex_RGW_SRG_self_energy(flow,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,EcGM,SigC,Z)
|
||||
call complex_RGW_SRG_self_energy(flow,eta,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,&
|
||||
rho,EcGM,SigC,Z)
|
||||
else
|
||||
call complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,eGW,Om,rho,&
|
||||
EcGM,SigC,Z)
|
||||
|
Loading…
x
Reference in New Issue
Block a user