mirror of
https://github.com/pfloos/quack
synced 2025-05-06 15:14:55 +02:00
183 lines
5.1 KiB
Fortran
183 lines
5.1 KiB
Fortran
subroutine complex_RGW_self_energy(eta,nBas,nOrb,nC,nO,nV,nR,nS,e,Om,rho,EcGM,Sig,Z)
|
|
|
|
! Compute correlation part of the self-energy and the renormalization factor
|
|
|
|
implicit none
|
|
include 'parameters.h'
|
|
|
|
! Input variables
|
|
|
|
double precision,intent(in) :: eta
|
|
integer,intent(in) :: nBas
|
|
integer,intent(in) :: nOrb
|
|
integer,intent(in) :: nC
|
|
integer,intent(in) :: nO
|
|
integer,intent(in) :: nV
|
|
integer,intent(in) :: nR
|
|
integer,intent(in) :: nS
|
|
complex*16,intent(in) :: e(nOrb)
|
|
complex*16,intent(in) :: Om(nS)
|
|
complex*16,intent(in) :: rho(nOrb,nOrb,nS)
|
|
|
|
! Local variables
|
|
|
|
integer :: i,j,a,b
|
|
integer :: p,q,m
|
|
double precision :: eps,eta_tilde
|
|
complex*16 :: num,tmp
|
|
double precision,allocatable :: Re_DS(:)
|
|
double precision,allocatable :: Im_DS(:)
|
|
double precision,allocatable :: Re_Sig(:,:)
|
|
double precision,allocatable :: Im_Sig(:,:)
|
|
double precision,allocatable :: Re_Z(:)
|
|
double precision,allocatable :: Im_Z(:)
|
|
|
|
! Output variables
|
|
|
|
complex*16,intent(out) :: EcGM
|
|
complex*16,intent(out) :: Sig(nOrb,nOrb)
|
|
complex*16,intent(out) :: Z(nOrb)
|
|
|
|
!----------------!
|
|
! GW self-energy !
|
|
!----------------!
|
|
allocate(Re_DS(nOrb),Im_DS(nOrb),Re_Z(nOrb),Im_Z(nOrb),Re_Sig(nOrb,nOrb),Im_Sig(nOrb,nOrb))
|
|
|
|
Re_Sig(:,:) = 0d0
|
|
Im_Sig(:,:) = 0d0
|
|
Re_DS(:) = 0d0
|
|
Im_DS(:) = 0d0
|
|
|
|
! Occupied part of the correlation self-energy
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
|
|
!$OMP PRIVATE(m,i,q,p,eps,num,eta_tilde,tmp) &
|
|
!$OMP DEFAULT(NONE)
|
|
!$OMP DO
|
|
do q=nC+1,nOrb-nR
|
|
do p=nC+1,nOrb-nR
|
|
do m=1,nS
|
|
do i=nC+1,nO
|
|
|
|
eps = real(e(p)) - real(e(i)) + real(Om(m))
|
|
eta_tilde = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m))
|
|
num = 2d0*rho(p,i,m)*rho(q,i,m)
|
|
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
|
|
eta_tilde/(eps**2+eta_tilde**2),kind=8)
|
|
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
|
|
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
! Virtual part of the correlation self-energy
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP SHARED(Re_Sig,Im_Sig,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
|
|
!$OMP PRIVATE(m,a,q,p,eps,num,eta_tilde,tmp) &
|
|
!$OMP DEFAULT(NONE)
|
|
!$OMP DO
|
|
do q=nC+1,nOrb-nR
|
|
do p=nC+1,nOrb-nR
|
|
do m=1,nS
|
|
do a=nO+1,nOrb-nR
|
|
|
|
eps = real(e(p)) - real(e(a)) - real(Om(m))
|
|
eta_tilde = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m))
|
|
num = 2d0*rho(p,a,m)*rho(q,a,m)
|
|
tmp = num*cmplx(eps/(eps**2 + eta_tilde**2),&
|
|
-eta_tilde/(eps**2 + eta_tilde**2),kind=8)
|
|
Re_Sig(p,q) = Re_Sig(p,q) + real(tmp)
|
|
Im_Sig(p,q) = Im_Sig(p,q) + aimag(tmp)
|
|
|
|
end do
|
|
end do
|
|
end do
|
|
end do
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
!------------------------!
|
|
! Renormalization factor !
|
|
!------------------------!
|
|
|
|
! Occupied part of the renormalization factor
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
|
|
!$OMP PRIVATE(m,i,p,eps,num,eta_tilde,tmp) &
|
|
!$OMP DEFAULT(NONE)
|
|
!$OMP DO
|
|
do p=nC+1,nOrb-nR
|
|
do m=1,nS
|
|
do i=nC+1,nO
|
|
eps = real(e(p)) - real(e(i)) + real(Om(m))
|
|
eta_tilde = eta - aimag(e(p)) + aimag(e(i)) - aimag(Om(m))
|
|
num = 2d0*rho(p,i,m)*rho(p,i,m)
|
|
tmp = num*cmplx(-(eps**2-eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
|
-2*eta_tilde*eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
|
Re_DS(p) = Re_DS(p) + real(tmp)
|
|
Im_DS(p) = Im_DS(p) + aimag(tmp)
|
|
end do
|
|
end do
|
|
end do
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
! Virtual part of the renormalization factor
|
|
|
|
!$OMP PARALLEL &
|
|
!$OMP SHARED(Re_DS,Im_DS,rho,eta,nS,nC,nO,nOrb,nR,e,Om) &
|
|
!$OMP PRIVATE(m,a,p,eps,num,eta_tilde,tmp) &
|
|
!$OMP DEFAULT(NONE)
|
|
!$OMP DO
|
|
do p=nC+1,nOrb-nR
|
|
do m=1,nS
|
|
do a=nO+1,nOrb-nR
|
|
|
|
eps = real(e(p)) - real(e(a)) - real(Om(m))
|
|
eta_tilde = eta + aimag(e(p)) - aimag(e(a)) - aimag(Om(m))
|
|
num = 2d0*rho(p,a,m)*rho(p,a,m)
|
|
tmp = num*cmplx(-(eps**2 - eta_tilde**2)/(eps**2 + eta_tilde**2)**2,&
|
|
2*eta_tilde*eps/eps/(eps**2 + eta_tilde**2)**2,kind=8)
|
|
Re_DS(p) = Re_DS(p) + real(tmp)
|
|
Im_DS(p) = Im_DS(p) + aimag(tmp)
|
|
end do
|
|
end do
|
|
end do
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
! Compute renormalization factor from derivative
|
|
Re_Z(:) = (1d0-Re_DS(:))/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
|
|
Im_Z(:) = Im_DS(:)/((1d0 - Re_DS(:))**2 + Im_DS(:)**2)
|
|
|
|
Z = cmplx(Re_Z,Im_Z,kind=8)
|
|
Sig = cmplx(Re_Sig,Im_Sig,kind=8)
|
|
|
|
deallocate(Re_DS,Im_DS,Re_Z,Im_Z,Re_Sig,Im_Sig)
|
|
|
|
!!-------------------------------------!
|
|
!! Galitskii-Migdal correlation energy !
|
|
!!-------------------------------------!
|
|
!
|
|
! EcGM = 0d0
|
|
! do m=1,nS
|
|
! do a=nO+1,nOrb-nR
|
|
! do i=nC+1,nO
|
|
!
|
|
! eps = e(a) - e(i) + Om(m)
|
|
! num = 4d0*rho(a,i,m)*rho(a,i,m)
|
|
! EcGM = EcGM - num*eps/(eps**2 + eta**2)
|
|
!
|
|
! end do
|
|
! end do
|
|
! end do
|
|
!
|
|
end subroutine
|