EPAWTFT/SlideToulouse/main.tex
2020-06-28 19:44:14 +02:00

542 lines
14 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[xcolor=x11names,compress]{beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{decorations.fractals}
\usepackage{mathpazo}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{xcolor}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{physics}
\usepackage{multimedia}
\usepackage{subfigure}
\usepackage[absolute,overlay]{textpos}
\usepackage{ragged2e}
\usepackage{amssymb}
\usepackage[version=4]{mhchem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme[subsection=false,shadow]{miniframes}
\useinnertheme{default}
\setbeamerfont{title like}{shape=\scshape}
\setbeamerfont{frametitle}{shape=\scshape}
\setbeamerfont{framesubtitle}{size=\normalsize}
\setbeamerfont{caption}{size=\scriptsize}
\setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4}
\setbeamercolor*{normal text}{fg=black,bg=white}
\setbeamercolor*{alerted text}{fg=red}
\setbeamercolor*{example text}{fg=black}
\setbeamercolor*{structure}{fg=black}
\setbeamercolor*{palette tertiary}{fg=black,bg=black!10}
\setbeamercolor*{palette quaternary}{fg=black,bg=black!10}
\setbeamercolor{caption name}{fg=DeepSkyBlue4}
\setbeamercolor{title}{fg=DeepSkyBlue4}
\setbeamercolor{itemize item}{fg=DeepSkyBlue4}
\setbeamercolor{frametitle}{fg=DeepSkyBlue4}
\renewcommand{\(}{\begin{columns}}
\renewcommand{\)}{\end{columns}}
\newcommand{\<}[1]{\begin{column}{#1}}
\renewcommand{\>}{\end{column}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{section in toc}[ball]
\setbeamertemplate{itemize items}[circle]
\beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2}
\beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2}
\title[Title]{Perturbation theories in the complex plane}
\author[]{Antoine \textsc{Marie}}
\setbeamersize{text margin left=5mm}
\setbeamersize{text margin right=5mm}
\institute{Supervised by Pierre-François \textsc{LOOS}}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\date{30th June 2020}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Why do we use perturbation theories in computational chemistry?}
\pause[1]
The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}.
But this method is missing the \textcolor{red}{correlation energy}...
\vspace{0.5cm}
\pause[2]
$\rightarrow$ We need methods to get this correlation energy!
\vspace{0.5cm}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering A general method}
In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian.
\end{beamerboxesrounded}
\end{frame}
\section{\textsc{Strange behaviors of the MP series}}
\begin{frame}{The Møller-Plesset perturbation theory}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian}
\begin{equation}
H = H_0 + \lambda V
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $H_0$: Unperturbed Hamiltonian
\item $V$: Perturbation operator
\end{itemize}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator}
\begin{equation}
F = T + J + K
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $T$: Kinetic energy operator
\item $J$: Coulomb operator
\item $K$: Exchange operator
\end{itemize}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{}
\centering
Full Configuration Interaction gives us access to high order terms of the perturbation series !
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Deceptive or slow convergences}
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{gill1986.png}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} using STO-3G basis set MPn theory (n~=~1-20).}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{Multi-reference and spin contamination}
\begin{table}
\centering
\begin{tabular}{c c c c c c c}
\hline
$r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end{tabular}
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the STO-3G basis set.}
\label{tab:my_label}
\end{table}
\footnotetext{\tiny{Gill et al. Why does unrestricted MøllerPlesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
\end{frame}
\begin{frame}{Divergent cases}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\section{The complex plane}
\begin{frame}{A simple example}
\begin{columns}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{An example function}
\begin{equation*}
\frac{1}{1 + x^4}
\end{equation*}
\end{beamerboxesrounded}
\vspace{1cm}
\begin{itemize}
\item Smooth for $x \in \mathbb{R}$
\item Infinitely differentiable on $\mathbb{R}$
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{exemplesingu.pdf}
\caption{Plot of $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
But the Taylor expansion of this function does not converge for $x\geq1$...
\vspace{0.3cm}
\centering Why ?
\end{frame}
\begin{frame}{And if we look in the complex plane ?}
\begin{columns}
\column{0.48\textwidth}
\centering The function has 4 singularities in the complex plane !
\vspace{1cm}
$x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{possingu.pdf}
\caption{\centering Singularities of the function $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}.
\end{frame}
\begin{frame}{Extending chemistry in the complex plane}
\begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable}
\begin{equation*}
H(\lambda) = H_0 + \lambda V
\end{equation*}
\end{beamerboxesrounded}
\begin{columns}
\column{0.48\textwidth}
\begin{itemize}
\item $n$ Riemann sheets
\vspace{0.3cm}
\item Exceptional points interconnecting the sheets
\vspace{0.3cm}
\item No ordering property in the complex plane
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{riemannsheet.png}
\label{fig:my_label}
\end{figure}
\end{columns}
\end{frame}
\section{Classifying the singularity}
\begin{frame}{Which features of the system localize the singularities ?}
\begin{itemize}
\item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet,...
\item Zeroth order reference: weak correlation or strongly correlated electrons.
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end{itemize}
\end{frame}
\begin{frame}{A two-state model}
\begin{columns}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf}
\caption{Example of an avoided crossing.}
\label{fig:my_label}
\end{figure}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix}
\centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$}
\vspace{0.15cm}
\small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$}
\end{beamerboxesrounded}
\vspace{1cm}
\end{columns}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\begin{frame}{Two-state model}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\begin{frame}{Existence of a critical point}
For $\lambda<0$:
\begin{equation*}
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
\end{equation*}
\footnote{stillinger, sergeev, baker}
\end{frame}
\begin{frame}{Critical point in a finite basis set}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Exact energy $E(z)$}
$E(z)$ has a critical point on the negative real axis and $E(z)$ is continue for real values below $z_{crit}$.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[3]
\centering \Large{How is this connected???}
\end{frame}
\begin{frame}{Singularities $\alpha$ and $\beta$}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Observation}
We can separate singularities in two parts.
\end{beamerboxesrounded}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Large avoided crossing
\item Non-zero imaginary part
\item Interaction with a low lying doubly excited states
\end{itemize}
\end{beamerboxesrounded}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\beta$}
\begin{itemize}
\item Sharp avoided crossing
\item Very small imaginary part
\item Interaction with a diffuse function
\end{itemize}
\end{beamerboxesrounded}
\footnote{sergeev}
\end{frame}
\begin{frame}{Modeling the critical point}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Stillinger}
\begin{quote}
\textit{"One might expect that $E_{FCI}(z) $ would try to model a continuum at $z_c$ with a grouping of discrete but closely spaced eigenstates that undergo sharp avoided crossing with the ground states."}
\end{quote}
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Sergeev et al.}
Proof of the existence of this group of sharp avoided crossings for Ne, He and HF when the basis set contains diffuse functions.
\end{beamerboxesrounded}
\end{frame}
\section{The spherium model}
\begin{frame}{Spherium: a theoretical playground}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
\begin{equation*}
H=-\frac{1}{2}(\grad_1^2 + \grad_2^2) + \frac{1}{r_{12}}
\end{equation*}
\end{beamerboxesrounded}
\vspace{0.5cm}
\begin{columns}
\column{0.48\textwidth}
\centering{Small $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} >> E_p$
\item Uniform density of electrons
\item \textcolor{red}{Weak correlation}
\end{itemize}
\vspace{0.5cm}
\column{0.48\textwidth}
\centering{Large $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} << E_p$
\item Electrons on the opposite sides of the sphere
\item \textcolor{red}{Strong correlation}
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}{Apparition of a class $\beta$ singularity}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Expectation}
The electrons are restricted to the surface of the sphere so we should not observe singularities characteristic of ionization processes.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\large But for some values of R... we actually observe some $\beta$ singularities!
\centering Why?
\vspace{0.5cm}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Symmetry breaking}
The $\beta$ singularities observed are connected to the symmetry breaking of the wave function.
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Conclusion}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Møller-Plesset perturbation theory}
By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy.
\end{beamerboxesrounded}
\pause[2]
\vspace{0.5cm}
But there is an other secret application of exceptional points...
\pause[3]
\vspace{0.5cm}
\begin{beamerboxesrounded}[scheme=foncé]{\centering A new way to excited states energies}
The exceptionnal points connect ground and excited states in the complex plane. Using those properties one can smoothly morph a ground state in an excited state.
\end{beamerboxesrounded}
\end{frame}
\end{document}