\documentclass[xcolor=x11names,compress]{beamer} %% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} \usepackage{tikz} \usetikzlibrary{decorations.fractals} \usepackage{mathpazo} \usepackage[english]{babel} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{xcolor} \usepackage{siunitx} \usepackage{graphicx} \usepackage{physics} \usepackage{multimedia} \usepackage{subfigure} \usepackage[absolute,overlay]{textpos} \usepackage{ragged2e} \usepackage{amssymb} \usepackage[version=4]{mhchem} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \useoutertheme[subsection=false,shadow]{miniframes} \useinnertheme{default} \setbeamerfont{title like}{shape=\scshape} \setbeamerfont{frametitle}{shape=\scshape} \setbeamerfont{framesubtitle}{size=\normalsize} \setbeamerfont{caption}{size=\scriptsize} \setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4} \setbeamercolor*{normal text}{fg=black,bg=white} \setbeamercolor*{alerted text}{fg=red} \setbeamercolor*{example text}{fg=black} \setbeamercolor*{structure}{fg=black} \setbeamercolor*{palette tertiary}{fg=black,bg=black!10} \setbeamercolor*{palette quaternary}{fg=black,bg=black!10} \setbeamercolor{caption name}{fg=DeepSkyBlue4} \setbeamercolor{title}{fg=DeepSkyBlue4} \setbeamercolor{itemize item}{fg=DeepSkyBlue4} \setbeamercolor{frametitle}{fg=DeepSkyBlue4} \renewcommand{\(}{\begin{columns}} \renewcommand{\)}{\end{columns}} \newcommand{\<}[1]{\begin{column}{#1}} \renewcommand{\>}{\end{column}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline}[frame number] \setbeamertemplate{caption}[numbered] \setbeamertemplate{section in toc}[ball] \setbeamertemplate{itemize items}[circle] \beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2} \beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2} \title[Title]{Perturbation theories in the complex plane} \author[]{Antoine \textsc{Marie}} \setbeamersize{text margin left=5mm} \setbeamersize{text margin right=5mm} \institute{Supervised by Pierre-François \textsc{LOOS}} \begin{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}[plain] \date{30th June 2020} \titlepage \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{Why do we use perturbation theories in computational chemistry?} \pause[1] The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}. But this method is missing the \textcolor{red}{correlation energy}... \vspace{0.5cm} \pause[2] $\rightarrow$ We need methods to get this correlation energy! \vspace{0.5cm} \pause[3] \begin{beamerboxesrounded}[scheme=foncé]{\centering A general method} In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian. \end{beamerboxesrounded} \end{frame} \section{\textsc{Strange behaviors of the MP series}} \begin{frame}{The Møller-Plesset perturbation theory} \pause[1] \begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian} \begin{equation} H = H_0 + \lambda V \end{equation} \end{beamerboxesrounded} \begin{itemize} \centering \item $H_0$: Unperturbed Hamiltonian \item $V$: Perturbation operator \end{itemize} \pause[2] \begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator} \begin{equation} F = T + J + K \end{equation} \end{beamerboxesrounded} \begin{itemize} \centering \item $T$: Kinetic energy operator \item $J$: Coulomb operator \item $K$: Exchange operator \end{itemize} \pause[3] \begin{beamerboxesrounded}[scheme=foncé]{} \centering Full Configuration Interaction gives us access to high order terms of the perturbation series ! \end{beamerboxesrounded} \end{frame} \begin{frame}{Deceptive or slow convergences} \begin{figure} \centering \includegraphics[width=0.4\textwidth]{gill1986.png} \caption{\centering Barriers to homolytic fission of \ce{He2^2+} using STO-3G basis set MPn theory (n~=~1-20).} \label{fig:my_label} \end{figure} \end{frame} \begin{frame}{Multi-reference and spin contamination} \begin{table} \centering \begin{tabular}{c c c c c c c} \hline $r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\ \hline 0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\ 1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\ 2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\ 2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\ \hline \end{tabular} \caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the STO-3G basis set.} \label{tab:my_label} \end{table} \footnotetext{\tiny{Gill et al. Why does unrestricted Møller–Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}} \end{frame} \begin{frame}{Divergent cases} \begin{figure} \centering \includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png} \caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.} \label{fig:my_label} \end{figure} \footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}} \end{frame} \section{The complex plane} \begin{frame}{A simple example} \begin{columns} \column{0.48\textwidth} \begin{beamerboxesrounded}[scheme=foncé]{An example function} \begin{equation*} \frac{1}{1 + x^4} \end{equation*} \end{beamerboxesrounded} \vspace{1cm} \begin{itemize} \item Smooth for $x \in \mathbb{R}$ \item Infinitely differentiable on $\mathbb{R}$ \end{itemize} \column{0.48\textwidth} \begin{figure} \centering \includegraphics[width=0.6\textwidth]{exemplesingu.pdf} \caption{Plot of $1/(1+x^4)$} \label{fig:my_label} \end{figure} \end{columns} But the Taylor expansion of this function does not converge for $x\geq1$... \vspace{0.3cm} \centering Why ? \end{frame} \begin{frame}{And if we look in the complex plane ?} \begin{columns} \column{0.48\textwidth} \centering The function has 4 singularities in the complex plane ! \vspace{1cm} $x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$ \column{0.48\textwidth} \begin{figure} \centering \includegraphics[width=0.6\textwidth]{possingu.pdf} \caption{\centering Singularities of the function $1/(1+x^4)$} \label{fig:my_label} \end{figure} \end{columns} The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}. \end{frame} \begin{frame}{Extending chemistry in the complex plane} \begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable} \begin{equation*} H(\lambda) = H_0 + \lambda V \end{equation*} \end{beamerboxesrounded} \begin{columns} \column{0.48\textwidth} \begin{itemize} \item $n$ Riemann sheets \vspace{0.3cm} \item Exceptional points interconnecting the sheets \vspace{0.3cm} \item No ordering property in the complex plane \end{itemize} \column{0.48\textwidth} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{riemannsheet.png} \label{fig:my_label} \end{figure} \end{columns} \end{frame} \section{Classifying the singularity} \begin{frame}{Which features of the system localize the singularities ?} \begin{itemize} \item Partitioning of the Hamiltonian: Møller-Plesset, Epstein-Nesbet,... \item Zeroth order reference: weak correlation or strongly correlated electrons. \item Finite or complete basis set. \item Localized or delocalized basis functions. \end{itemize} \end{frame} \begin{frame}{A two-state model} \begin{columns} \column{0.48\textwidth} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf} \caption{Example of an avoided crossing.} \label{fig:my_label} \end{figure} \column{0.48\textwidth} \begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix} \centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$} \vspace{0.15cm} \small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$} \end{beamerboxesrounded} \vspace{1cm} \end{columns} \footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}} \end{frame} \begin{frame}{Two-state model} \begin{figure} \centering \includegraphics[width=0.6\textwidth]{figure-fig14.png} \caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}} \label{fig:my_label} \end{figure} \footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}} \end{frame} \begin{frame}{Existence of a critical point} For $\lambda<0$: \begin{equation*} H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j> E_p$ \item Uniform density of electrons \item \textcolor{red}{Weak correlation} \end{itemize} \vspace{0.5cm} \column{0.48\textwidth} \centering{Large $R$} \vspace{0.5cm} \begin{itemize} \item $E_{kin} << E_p$ \item Electrons on the opposite sides of the sphere \item \textcolor{red}{Strong correlation} \end{itemize} \end{columns} \end{frame} \begin{frame}{Apparition of a class $\beta$ singularity} \pause[1] \begin{beamerboxesrounded}[scheme=foncé]{\centering Expectation} The electrons are restricted to the surface of the sphere so we should not observe singularities characteristic of ionization processes. \end{beamerboxesrounded} \vspace{0.5cm} \pause[2] \large But for some values of R... we actually observe some $\beta$ singularities! \centering Why? \vspace{0.5cm} \pause[3] \begin{beamerboxesrounded}[scheme=foncé]{\centering Symmetry breaking} The $\beta$ singularities observed are connected to the symmetry breaking of the wave function. \end{beamerboxesrounded} \end{frame} \begin{frame}{Conclusion} \pause[1] \begin{beamerboxesrounded}[scheme=foncé]{\centering Møller-Plesset perturbation theory} By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy. \end{beamerboxesrounded} \pause[2] \vspace{0.5cm} But there is an other secret application of exceptional points... \pause[3] \vspace{0.5cm} \begin{beamerboxesrounded}[scheme=foncé]{\centering A new way to excited states energies} The exceptionnal points connect ground and excited states in the complex plane. Using those properties one can smoothly morph a ground state in an excited state. \end{beamerboxesrounded} \end{frame} \end{document}