add some graph

This commit is contained in:
Antoine Marie 2020-07-20 16:15:53 +02:00
parent 70d9521b3e
commit d9264ce394
5 changed files with 17 additions and 5 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -555,7 +555,7 @@
Date-Modified = {2019-01-22 22:33:30 +0100}, Date-Modified = {2019-01-22 22:33:30 +0100},
Keywords = {qmech}, Keywords = {qmech},
Publisher = {McGraw-Hill}, Publisher = {McGraw-Hill},
Title = {Modern quantum chemistry}, Title = {Modern quantum chemistry: Introduction to advanced electronic structure},
Year = {1989}, Year = {1989},
} }

View File

@ -552,16 +552,28 @@ In this part, we will try to investigate how some parameters of $\bH(\lambda)$ i
We will take the simple case of the M{\o}ller-Plesset partitioning with a restricted Hartree-Fock minimal basis set as our starting point for this analysis. \\ We will take the simple case of the M{\o}ller-Plesset partitioning with a restricted Hartree-Fock minimal basis set as our starting point for this analysis. \\
Puis on rajoute les 3 autres partitionnements \\ \begin{figure}[h!]
\centering
\includegraphics[width=0.45\textwidth]{RHFMiniBasRCV.pdf}
\caption{\centering }
\label{fig:RHFMiniBasRCV}
\end{figure}
Puis différence entre $Y_{l0}$ et $P_l(\cos(\theta))$ (CSF). Parler de la possibilité de la base strong coupling. \\ Then we will compare the different partitioning using the same basis set. The \autoref{fig:RadiusPartitioning} shows the evolution of the radius of convergence in function of $R$ for the M{\o}ller-Plesset, the Epstein-Nesbet, the weak correlation and the strong coupling partitioning. We can see that
\begin{figure}[h!]
\centering
\includegraphics[width=0.8\textwidth]{PartitioningRCV.pdf}
\caption{\centering }
\label{fig:RadiusPartitioning}
\end{figure}
Puis différence entre $Y_{l0}$ et $P_l(\cos(\theta))$ (CSF). + petit Parler de la possibilité de la base strong coupling avec la citation paola et les polynomes . \\
Différence RHF/UHF, Hamiltonien non-bloc diagonal, coefficients complexe pour R<3/2 \\ Différence RHF/UHF, Hamiltonien non-bloc diagonal, coefficients complexe pour R<3/2 \\
Influence de la taille de la base en RHF et UHF \\ Influence de la taille de la base en RHF et UHF \\
\subsection{Exceptional points in the UHF formalism} \subsection{Exceptional points in the UHF formalism}
RHF vs UHF RHF vs UHF