update sec 5.1
This commit is contained in:
parent
e8f8e6508f
commit
70d9521b3e
@ -540,13 +540,27 @@ In addition, we can also consider the symmetry-broken solutions beyond their res
|
||||
|
||||
\subsection{Evolution of the radius of convergence}
|
||||
|
||||
Different partitioning
|
||||
In this part, we will try to investigate how some parameters of $\bH(\lambda)$ influence the radius of convergence of the perturbation series. The radius of convergence is equal to the closest singularity to the origin of $E(\lambda)$. The exceptional points are simultaneous solution of \eqref{eq:PolChar} and \eqref{eq:DPolChar} so we solve this system to find their position.
|
||||
|
||||
$Y_{l0}$ vs $P_l(\cos(\theta))$
|
||||
\begin{equation}\label{eq:PolChar}
|
||||
\text{det}[E-\bH(\lambda)]=0
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}\label{eq:DPolChar}
|
||||
\pdv{E}\text{det}[E-\bH(\lambda)]=0
|
||||
\end{equation}
|
||||
|
||||
We will take the simple case of the M{\o}ller-Plesset partitioning with a restricted Hartree-Fock minimal basis set as our starting point for this analysis. \\
|
||||
|
||||
Puis on rajoute les 3 autres partitionnements \\
|
||||
|
||||
Puis différence entre $Y_{l0}$ et $P_l(\cos(\theta))$ (CSF). Parler de la possibilité de la base strong coupling. \\
|
||||
|
||||
Différence RHF/UHF, Hamiltonien non-bloc diagonal, coefficients complexe pour R<3/2 \\
|
||||
|
||||
Influence de la taille de la base en RHF et UHF \\
|
||||
|
||||
Size of the basis set
|
||||
|
||||
Strong coupling ???
|
||||
|
||||
\subsection{Exceptional points in the UHF formalism}
|
||||
|
||||
@ -562,7 +576,7 @@ PT broken symmetry sb UHF
|
||||
|
||||
\begin{itemize}
|
||||
\item Corriger les erreurs dans la biblio
|
||||
\item tableau nrj uhf, citation spin density wave et charge density wave
|
||||
\item citation spin density wave et charge density wave
|
||||
\end{itemize}
|
||||
|
||||
\section{Conclusion}
|
||||
|
Loading…
x
Reference in New Issue
Block a user