fix issue with phi
This commit is contained in:
parent
0d57b5092a
commit
933ac80e32
@ -249,7 +249,7 @@ This evidences that encircling non-Hermitian degeneracies at EPs leads to an int
|
|||||||
The eigenvectors associated to the eigenenergies \eqref{eq:E_2x2} are
|
The eigenvectors associated to the eigenenergies \eqref{eq:E_2x2} are
|
||||||
\begin{equation}\label{eq:phi_2x2}
|
\begin{equation}\label{eq:phi_2x2}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\phi_{\pm}(\lambda)
|
\phi_{\pm}
|
||||||
& =
|
& =
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
(\epsilon_1 - \epsilon_2 \pm \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\lambda^2})/2\lambda
|
(\epsilon_1 - \epsilon_2 \pm \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\lambda^2})/2\lambda
|
||||||
@ -267,9 +267,9 @@ The eigenvectors associated to the eigenenergies \eqref{eq:E_2x2} are
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
and, for $\lambda=\lambda_\text{EP}$, they become
|
and, for $\lambda=\lambda_\text{EP}$, they become
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\phi_{\pm}\qty(i\,\frac{\epsilon_1 - \epsilon_2}{2}) & = \begin{pmatrix} -i \\ 1\end{pmatrix},
|
\phi_{\pm} & = \begin{pmatrix} -i \\ 1\end{pmatrix},
|
||||||
&
|
&
|
||||||
\phi_{\pm}\qty(-i\,\frac{\epsilon_1 - \epsilon_2}{2}) & = \begin{pmatrix} i \\ 1\end{pmatrix}.
|
\phi_{\pm} & = \begin{pmatrix} i \\ 1\end{pmatrix},
|
||||||
\end{align}
|
\end{align}
|
||||||
which are clearly self-orthogonal, i.e., their norm is equal to zero.
|
which are clearly self-orthogonal, i.e., their norm is equal to zero.
|
||||||
%Using Eq.~\eqref{eq:E_EP}, Eq.~\eqref{eq:phi_2x2} can be recast as
|
%Using Eq.~\eqref{eq:E_EP}, Eq.~\eqref{eq:phi_2x2} can be recast as
|
||||||
@ -282,7 +282,7 @@ Then, if the eigenvectors are properly normalized, they behave as $(\lambda - \l
|
|||||||
\phi_{\pm}(2\pi) & = \phi_{\mp}(0),
|
\phi_{\pm}(2\pi) & = \phi_{\mp}(0),
|
||||||
&
|
&
|
||||||
\phi_{\pm}(4\pi) & = -\phi_{\pm}(0),
|
\phi_{\pm}(4\pi) & = -\phi_{\pm}(0),
|
||||||
\\
|
&
|
||||||
\phi_{\pm}(6\pi) & = -\phi_{\mp}(0),
|
\phi_{\pm}(6\pi) & = -\phi_{\mp}(0),
|
||||||
&
|
&
|
||||||
\phi_{\pm}(8\pi) & = \phi_{\pm}(0).
|
\phi_{\pm}(8\pi) & = \phi_{\pm}(0).
|
||||||
@ -349,6 +349,7 @@ is the core Hamiltonian and
|
|||||||
v^\text{HF}(\vb{x}) = \sum_i \qty[ J_i(\vb{x}) - K_i(\vb{x}) ]
|
v^\text{HF}(\vb{x}) = \sum_i \qty[ J_i(\vb{x}) - K_i(\vb{x}) ]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
is the HF mean-field potential with
|
is the HF mean-field potential with
|
||||||
|
\begin{subequations}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\label{eq:CoulOp}
|
\label{eq:CoulOp}
|
||||||
J_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') ] \phi_p(\vb{x})
|
J_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') ] \phi_p(\vb{x})
|
||||||
@ -356,6 +357,7 @@ is the HF mean-field potential with
|
|||||||
\label{eq:ExcOp}
|
\label{eq:ExcOp}
|
||||||
K_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_p(\vb{x}') ] \phi_i(\vb{x})
|
K_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_p(\vb{x}') ] \phi_i(\vb{x})
|
||||||
\end{gather}
|
\end{gather}
|
||||||
|
\end{subequations}
|
||||||
being the Coulomb and exchange operators (respectively) in the spin-orbital basis.
|
being the Coulomb and exchange operators (respectively) in the spin-orbital basis.
|
||||||
From hereon, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied (or virtual) orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
|
From hereon, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied (or virtual) orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
|
||||||
Rather than solving Eq.~\eqref{eq:SchrEq}, HF theory uses the variational principle to find an approximation of $\Psi$ as a single Slater determinant. Hence a Slater determinant is not an eigenfunction of the exact Hamiltonian $\hH$. However, it is, by definition, an eigenfunction of the so-called (approximated) HF many-electron Hamiltonian defined as the sum of the one-electron Fock operators
|
Rather than solving Eq.~\eqref{eq:SchrEq}, HF theory uses the variational principle to find an approximation of $\Psi$ as a single Slater determinant. Hence a Slater determinant is not an eigenfunction of the exact Hamiltonian $\hH$. However, it is, by definition, an eigenfunction of the so-called (approximated) HF many-electron Hamiltonian defined as the sum of the one-electron Fock operators
|
||||||
|
Loading…
Reference in New Issue
Block a user