diff --git a/RapportStage/Rapport.tex b/RapportStage/Rapport.tex index 2c03770..47a423d 100644 --- a/RapportStage/Rapport.tex +++ b/RapportStage/Rapport.tex @@ -249,7 +249,7 @@ This evidences that encircling non-Hermitian degeneracies at EPs leads to an int The eigenvectors associated to the eigenenergies \eqref{eq:E_2x2} are \begin{equation}\label{eq:phi_2x2} \begin{split} - \phi_{\pm}(\lambda) + \phi_{\pm} & = \begin{pmatrix} (\epsilon_1 - \epsilon_2 \pm \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\lambda^2})/2\lambda @@ -267,9 +267,9 @@ The eigenvectors associated to the eigenenergies \eqref{eq:E_2x2} are \end{equation} and, for $\lambda=\lambda_\text{EP}$, they become \begin{align} - \phi_{\pm}\qty(i\,\frac{\epsilon_1 - \epsilon_2}{2}) & = \begin{pmatrix} -i \\ 1\end{pmatrix}, + \phi_{\pm} & = \begin{pmatrix} -i \\ 1\end{pmatrix}, & - \phi_{\pm}\qty(-i\,\frac{\epsilon_1 - \epsilon_2}{2}) & = \begin{pmatrix} i \\ 1\end{pmatrix}. + \phi_{\pm} & = \begin{pmatrix} i \\ 1\end{pmatrix}, \end{align} which are clearly self-orthogonal, i.e., their norm is equal to zero. %Using Eq.~\eqref{eq:E_EP}, Eq.~\eqref{eq:phi_2x2} can be recast as @@ -282,7 +282,7 @@ Then, if the eigenvectors are properly normalized, they behave as $(\lambda - \l \phi_{\pm}(2\pi) & = \phi_{\mp}(0), & \phi_{\pm}(4\pi) & = -\phi_{\pm}(0), - \\ + & \phi_{\pm}(6\pi) & = -\phi_{\mp}(0), & \phi_{\pm}(8\pi) & = \phi_{\pm}(0). @@ -349,6 +349,7 @@ is the core Hamiltonian and v^\text{HF}(\vb{x}) = \sum_i \qty[ J_i(\vb{x}) - K_i(\vb{x}) ] \end{equation} is the HF mean-field potential with +\begin{subequations} \begin{gather} \label{eq:CoulOp} J_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') ] \phi_p(\vb{x}) @@ -356,6 +357,7 @@ is the HF mean-field potential with \label{eq:ExcOp} K_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_p(\vb{x}') ] \phi_i(\vb{x}) \end{gather} +\end{subequations} being the Coulomb and exchange operators (respectively) in the spin-orbital basis. From hereon, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied (or virtual) orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals. Rather than solving Eq.~\eqref{eq:SchrEq}, HF theory uses the variational principle to find an approximation of $\Psi$ as a single Slater determinant. Hence a Slater determinant is not an eigenfunction of the exact Hamiltonian $\hH$. However, it is, by definition, an eigenfunction of the so-called (approximated) HF many-electron Hamiltonian defined as the sum of the one-electron Fock operators