TBE
This commit is contained in:
parent
f61c78f3bd
commit
216d5c3ab4
@ -536,7 +536,7 @@ From a more practical point of view, to compute the BSE excitation energies of a
|
||||
\begin{pmatrix}
|
||||
\bA{}(\Om{s}{}) & \bB{}(\Om{s}{})
|
||||
\\
|
||||
-\bB{}(\titou{-}\Om{s}{}) & -\bA{}(\titou{-}\Om{s}{})
|
||||
-\bB{}(\Om{s}{}) & -\bA{}(\Om{s}{})
|
||||
\\
|
||||
\end{pmatrix}
|
||||
\cdot
|
||||
@ -581,7 +581,7 @@ Now, let us decompose, using basic perturbation theory, the non-linear eigenprob
|
||||
\label{eq:LR-PT}
|
||||
\begin{pmatrix}
|
||||
\bA{}(\Om{s}{}) & \bB{}(\Om{s}{}) \\
|
||||
-\bB{}(\titou{-}\Om{s}{}) & -\bA{}(\titou{-}\Om{s}{}) \\
|
||||
-\bB{}(\Om{s}{}) & -\bA{}(\Om{s}{}) \\
|
||||
\end{pmatrix}
|
||||
\\
|
||||
=
|
||||
@ -594,7 +594,7 @@ Now, let us decompose, using basic perturbation theory, the non-linear eigenprob
|
||||
+
|
||||
\begin{pmatrix}
|
||||
\bA{(1)}(\Om{s}{}) & \bB{(1)}(\Om{s}{}) \\
|
||||
-\bB{(1)}(\titou{-}\Om{s}{}) & -\bA{(1)}(\titou{-}\Om{s}{}) \\
|
||||
-\bB{(1)}(\Om{s}{}) & -\bA{(1)}(\Om{s}{}) \\
|
||||
\end{pmatrix},
|
||||
\end{multline}
|
||||
with
|
||||
@ -675,7 +675,7 @@ Thanks to first-order perturbation theory, the first-order correction to the $s$
|
||||
\cdot
|
||||
\begin{pmatrix}
|
||||
\bA{(1)}(\Om{s}{(0)}) & \bB{(1)}(\Om{s}{(0)}) \\
|
||||
-\bB{(1)}(\titou{-}\Om{s}{(0)}) & -\bA{(1)}(\titou{-}\Om{s}{(0)}) \\
|
||||
-\bB{(1)}(\Om{s}{(0)}) & -\bA{(1)}(\Om{s}{(0)}) \\
|
||||
\end{pmatrix}
|
||||
\cdot
|
||||
\begin{pmatrix}
|
||||
|
Loading…
Reference in New Issue
Block a user