From 216d5c3ab40bb3752c06305885dbcf6d66572fba Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Mon, 1 Jun 2020 22:44:00 +0200 Subject: [PATCH] TBE --- BSEdyn.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/BSEdyn.tex b/BSEdyn.tex index 5e5b07d..02b7f6b 100644 --- a/BSEdyn.tex +++ b/BSEdyn.tex @@ -536,7 +536,7 @@ From a more practical point of view, to compute the BSE excitation energies of a \begin{pmatrix} \bA{}(\Om{s}{}) & \bB{}(\Om{s}{}) \\ - -\bB{}(\titou{-}\Om{s}{}) & -\bA{}(\titou{-}\Om{s}{}) + -\bB{}(\Om{s}{}) & -\bA{}(\Om{s}{}) \\ \end{pmatrix} \cdot @@ -581,7 +581,7 @@ Now, let us decompose, using basic perturbation theory, the non-linear eigenprob \label{eq:LR-PT} \begin{pmatrix} \bA{}(\Om{s}{}) & \bB{}(\Om{s}{}) \\ - -\bB{}(\titou{-}\Om{s}{}) & -\bA{}(\titou{-}\Om{s}{}) \\ + -\bB{}(\Om{s}{}) & -\bA{}(\Om{s}{}) \\ \end{pmatrix} \\ = @@ -594,7 +594,7 @@ Now, let us decompose, using basic perturbation theory, the non-linear eigenprob + \begin{pmatrix} \bA{(1)}(\Om{s}{}) & \bB{(1)}(\Om{s}{}) \\ - -\bB{(1)}(\titou{-}\Om{s}{}) & -\bA{(1)}(\titou{-}\Om{s}{}) \\ + -\bB{(1)}(\Om{s}{}) & -\bA{(1)}(\Om{s}{}) \\ \end{pmatrix}, \end{multline} with @@ -675,7 +675,7 @@ Thanks to first-order perturbation theory, the first-order correction to the $s$ \cdot \begin{pmatrix} \bA{(1)}(\Om{s}{(0)}) & \bB{(1)}(\Om{s}{(0)}) \\ - -\bB{(1)}(\titou{-}\Om{s}{(0)}) & -\bA{(1)}(\titou{-}\Om{s}{(0)}) \\ + -\bB{(1)}(\Om{s}{(0)}) & -\bA{(1)}(\Om{s}{(0)}) \\ \end{pmatrix} \cdot \begin{pmatrix}