quantum_package/src/MRCC/mrcc_utils.irp.f

151 lines
4.0 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ]
implicit none
BEGIN_DOC
! Bitmasks for CAS reference determinants. (N_int, alpha/beta, CAS reference)
END_DOC
logical :: exists
integer :: i
PROVIDE ezfio_filename
call ezfio_has_bitmasks_cas(exists)
if (exists) then
call ezfio_get_bitmasks_cas(cas_bitmask)
else
do i=1,N_cas_bitmask
cas_bitmask(:,:,i) = iand(not(HF_bitmask(:,:)),full_ijkl_bitmask(:,:))
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, N_det_cas ]
implicit none
BEGIN_DOC
! Number of generator detetrminants
END_DOC
integer :: i,k,l
logical :: good
call write_time(output_dets)
N_det_cas = 0
do i=1,N_det
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) )
enddo
if (good) then
exit
endif
enddo
if (good) then
N_det_cas += 1
endif
enddo
N_det_cas = max(N_det_cas, 1)
call write_int(output_dets,N_det_cas, 'Number of determinants in the CAS')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,N_det_cas) ]
&BEGIN_PROVIDER [ double precision, psi_cas_coefs, (N_det_cas,n_states) ]
&BEGIN_PROVIDER [ integer, idx_cas, (N_det_cas) ]
implicit none
BEGIN_DOC
! For Single reference wave functions, the generator is the
! Hartree-Fock determinant
END_DOC
integer :: i, k, l, m
logical :: good
m=0
do i=1,N_det
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) )
enddo
if (good) then
exit
endif
enddo
if (good) then
m = m+1
do k=1,N_int
psi_cas(k,1,m) = psi_det(k,1,i)
psi_cas(k,2,m) = psi_det(k,2,i)
enddo
idx_cas(m) = i
do k=1,N_states
psi_cas_coefs(m,k) = psi_coef(i,k)
enddo
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_sd, (N_int,2,N_det) ]
&BEGIN_PROVIDER [ double precision, psi_sd_coefs, (N_det,n_states) ]
&BEGIN_PROVIDER [ integer, idx_sd, (N_det) ]
&BEGIN_PROVIDER [ integer, N_det_sd]
implicit none
BEGIN_DOC
! SD
END_DOC
integer :: i_sd,j,k
integer :: degree
logical :: in_cas
i_sd =0
do k=1,N_det
in_cas = .False.
do j=1,N_det_cas
call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int)
if (degree == 0) then
in_cas = .True.
exit
endif
enddo
if (.not.in_cas) then
double precision :: hij
i_sd += 1
psi_sd(1:N_int,1:2,i_sd) = psi_det(1:N_int,1:2,k)
psi_sd_coefs(i_sd,1:N_states) = psi_coef(k,1:N_states)
idx_sd(i_sd) = k
endif
enddo
N_det_sd = i_sd
END_PROVIDER
BEGIN_PROVIDER [ double precision, lambda_mrcc, (psi_det_size,n_states) ]
implicit none
BEGIN_DOC
! cm/<Psi_0|H|D_m>
END_DOC
integer :: i,k
double precision :: ihpsi(N_states)
do i=1,N_det_sd
call i_h_psi(psi_sd(1,1,i), psi_cas, psi_cas_coefs, N_int, N_det_cas, &
size(psi_cas_coefs,1), n_states, ihpsi)
double precision :: hij
do k=1,N_states
if (dabs(ihpsi(k)) < 1.d-6) then
lambda_mrcc(i,k) = 0.d0
else
lambda_mrcc(i,k) = psi_sd_coefs(i,k)/ihpsi(k)
lambda_mrcc(i,k) = min( lambda_mrcc (i,k),0.d0 )
endif
enddo
enddo
END_PROVIDER