use bitmasks BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ] implicit none BEGIN_DOC ! Bitmasks for CAS reference determinants. (N_int, alpha/beta, CAS reference) END_DOC logical :: exists integer :: i PROVIDE ezfio_filename call ezfio_has_bitmasks_cas(exists) if (exists) then call ezfio_get_bitmasks_cas(cas_bitmask) else do i=1,N_cas_bitmask cas_bitmask(:,:,i) = iand(not(HF_bitmask(:,:)),full_ijkl_bitmask(:,:)) enddo endif END_PROVIDER BEGIN_PROVIDER [ integer, N_det_cas ] implicit none BEGIN_DOC ! Number of generator detetrminants END_DOC integer :: i,k,l logical :: good call write_time(output_dets) N_det_cas = 0 do i=1,N_det do l=1,n_cas_bitmask good = .True. do k=1,N_int good = good .and. ( & iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == & iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( & iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == & iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) ) enddo if (good) then exit endif enddo if (good) then N_det_cas += 1 endif enddo N_det_cas = max(N_det_cas, 1) call write_int(output_dets,N_det_cas, 'Number of determinants in the CAS') END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_cas, (N_int,2,N_det_cas) ] &BEGIN_PROVIDER [ double precision, psi_cas_coefs, (N_det_cas,n_states) ] &BEGIN_PROVIDER [ integer, idx_cas, (N_det_cas) ] implicit none BEGIN_DOC ! For Single reference wave functions, the generator is the ! Hartree-Fock determinant END_DOC integer :: i, k, l, m logical :: good m=0 do i=1,N_det do l=1,n_cas_bitmask good = .True. do k=1,N_int good = good .and. ( & iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == & iand(not(cas_bitmask(k,1,l)), psi_det(k,1,1)) ) .and. ( & iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == & iand(not(cas_bitmask(k,2,l)), psi_det(k,2,1)) ) enddo if (good) then exit endif enddo if (good) then m = m+1 do k=1,N_int psi_cas(k,1,m) = psi_det(k,1,i) psi_cas(k,2,m) = psi_det(k,2,i) enddo idx_cas(m) = i do k=1,N_states psi_cas_coefs(m,k) = psi_coef(i,k) enddo endif enddo END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_sd, (N_int,2,N_det) ] &BEGIN_PROVIDER [ double precision, psi_sd_coefs, (N_det,n_states) ] &BEGIN_PROVIDER [ integer, idx_sd, (N_det) ] &BEGIN_PROVIDER [ integer, N_det_sd] implicit none BEGIN_DOC ! SD END_DOC integer :: i_sd,j,k integer :: degree logical :: in_cas i_sd =0 do k=1,N_det in_cas = .False. do j=1,N_det_cas call get_excitation_degree(psi_cas(1,1,j), psi_det(1,1,k), degree, N_int) if (degree == 0) then in_cas = .True. exit endif enddo if (.not.in_cas) then double precision :: hij i_sd += 1 psi_sd(1:N_int,1:2,i_sd) = psi_det(1:N_int,1:2,k) psi_sd_coefs(i_sd,1:N_states) = psi_coef(k,1:N_states) idx_sd(i_sd) = k endif enddo N_det_sd = i_sd END_PROVIDER BEGIN_PROVIDER [ double precision, lambda_mrcc, (psi_det_size,n_states) ] implicit none BEGIN_DOC ! cm/ END_DOC integer :: i,k double precision :: ihpsi(N_states) do i=1,N_det_sd call i_h_psi(psi_sd(1,1,i), psi_cas, psi_cas_coefs, N_int, N_det_cas, & size(psi_cas_coefs,1), n_states, ihpsi) double precision :: hij do k=1,N_states if (dabs(ihpsi(k)) < 1.d-6) then lambda_mrcc(i,k) = 0.d0 else lambda_mrcc(i,k) = psi_sd_coefs(i,k)/ihpsi(k) lambda_mrcc(i,k) = min( lambda_mrcc (i,k),0.d0 ) endif enddo enddo END_PROVIDER