2.1 KiB
Jastrow
Information related to the Jastrow factor in trans-correlated calculations.
The main keywords are: - j2e_type
-
j1e_type
- env_type
j2e_type Options
none: No 2e-Jastrow is used.
rs-dft: 2e-Jastrow inspired by Range Separated Density Functional Theory. It has the following shape: [ = _{i,j i} u(_i, _j) ] with, [ u(_1, 2) = u(r{12}) = - ]
env_type Options
The Jastrow used is multiplied by an envelope (v):
\begin{equation} \tau = \frac{1}{2} \sum_{i,j \neq i} u(\mathbf{r}_i, \mathbf{r}_j) \, v(\mathbf{r}_i) \, v(\mathbf{r}_j) \end{equation}
if
env_type
is none: No envelope is used.if
env_type
is prod-gauss: (v() = _{a} (1 - e^{-_a ( - _a)^2 } ))if
env_type
is sum-gauss: (v() = 1 - _{a} (1 - c_a e^{-_a ( - _a)^2 } ))
Here, (A) designates the nuclei, and the coefficients and exponents
are defined in the tables enc_coef
and
env_expo
respectively.
j1e_type Options
The Jastrow used is:
\begin{equation} \tau = \sum_i u_{1e}(\mathbf{r}_i) \end{equation}
if
j1e_type
is none: No one-electron Jastrow is used.if
j1e_type
is gauss: We use (u_{1e}() = A {p_A} c_{p_A} e^{-_{p_A} ( - _A)^2}), where the (c_p) and (_p) are defined by the tablesj1e_coef
andj1e_expo
, respectively.if
j1e_type
is charge-harmonizer: The one-electron Jastrow factor depends on the two-electron Jastrow factor (u_{2e}) such that the one-electron term is added to compensate for the unfavorable effect of altering the charge density caused by the two-electron factor: \begin{equation} u_{1e}(\mathbf{r}_1) = - \frac{N-1}{2N} \sum_{\sigma} \int d\mathbf{r}_2 \rho^{\sigma}(\mathbf{r}_2) u_{2e}(\mathbf{r}_1, \mathbf{r}_2), \end{equation}
Feel free to review and let me know if any further adjustments are needed.