9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 11:33:29 +01:00
qp2/src/mo_optimization/org/diagonal_hessian_opt.org
2023-04-18 13:56:30 +02:00

37 KiB

Diagonal hessian

The hessian of the CI energy with respects to the orbital rotation is : (C-c C-x C-l)

\begin{align*} H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\ &= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u) + \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_r^u)] -(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\ &+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} + v_{uv}^{st} \Gamma_{pt}^{uv}) + \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\ &+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{pr}^{uv}) - \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts}) \end{align*}

With pq a permutation operator :

\begin{align*} \mathcal{P}_{pq}= 1 - (p \leftrightarrow q) \end{align*} \begin{align*} \mathcal{P}_{pq} \mathcal{P}_{rs} &= (1 - (p \leftrightarrow q))(1 - (r \leftrightarrow s)) \\ &= 1 - (p \leftrightarrow q) - (r \leftrightarrow s) + (p \leftrightarrow q, r \leftrightarrow s) \end{align*}

Where p,q,r,s,t,u,v are general spatial orbitals mo_num : the number of molecular orbitals $$h$$ : One electron integrals $$\gamma$$ : One body density matrix (state average in our case) $$v$$ : Two electron integrals $$\Gamma$$ : Two body density matrice (state average in our case)

Source : Seniority-based coupled cluster theory

  1. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384

Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo E. Scuseria

Here for the diagonal of the hessian it's a little more complicated than for the hessian. It's not just compute the diagonal terms of the hessian because of the permutations.

The hessian is (p,q,r,s), so the diagonal terms are (p,q,p,q). But with the permutations : p <-> q, r <-> s, p <-> q and r <-> s, we have a diagonal term, if : p = r and q = s, => (p,q,p,q) or q = r and p = s, => (p,q,q,p)

For that reason, we will use 2D temporary arrays to store the elements. One for the terms (p,q,p,q) and an other for the terms of kind (p,q,q,p). We will also use a 1D temporary array to store the terms of the kind (p,p,p,p) due to the kronoecker delta.

Compute the diagonal hessian of energy with respects to orbital rotations By diagonal hessian we mean, diagonal elements of the hessian

Provided:

mo_num integer number of MOs
mo_one_e_integrals(mo_num,mo_num) double precision mono-electronic integrals
one_e_dm_mo(mo_num,mo_num) double precision one e- density matrix (state average)
two_e_dm_mo(mo_num,mo_num,mo_num) double precision two e- density matrix (state average)

Input:

n integer mo_num*(mo_num-1)/2

Output:

H(n,n) double precision Hessian matrix
h_tmpr(mo_num,mo_num,mo_num,mo_num) double precision Complete hessian matrix before the tranformation
in n by n matrix

Internal:

hessian(mo_num,mo_num,mo_num,mo_num) double precision temporary array containing the hessian before
the permutations
p, q, r, s integer indexes of the hessian elements
t, u, v integer indexes for the sums
pq, rs integer indexes for the transformation of the hessian
(4D -> 2D)
t1,t2,t3 double precision time to compute the hessian
t4,t5,t6 double precision time to compute the differ each element
tmp_bi_int_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the bielectronic integrals (private)
tmp_bi_int_3_shared(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the bielectronic integrals (shared)
tmp_2rdm_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the 2 body density matrix (private)
tmp_2rdm_3_shared(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the 2 body density matrix (shared)
tmp_accu(mo_num,mo_num) double precision temporary array (private)
tmp_accu_shared(mo_num,mo_num) double precision temporary array (shared)
tmp_accu_1(mo_num) double precision temporary array (private)
tmp_accu_1_shared(mo_num) double precision temporary array (shared)
tmp_h_pppp(mo_num) double precision matrix containing the hessien elements hessian(p,p,p,p)
tmp_h_pqpq(mo_num,mo_num) double precision matrix containing the hessien elements hessian(p,q,p,q)
tmp_h_pqqp(mo_num,mo_num) double precision matrix containing the hessien elements hessian(p,q,q,p)

Function:

get_two_e_integral double precision bi-electronic integrals
subroutine diag_hessian_opt(n,H)!, h_tmpr)
 
  use omp_lib
  
  include 'constants.h' 

  implicit none

  ! Variables

  ! in
  integer, intent(in)           :: n 
 
  ! out
  double precision, intent(out) :: H(n)!,n),  h_tmpr(mo_num,mo_num,mo_num,mo_num)
  
  ! internal
  !double precision, allocatable :: hessian(:,:,:,:)!, h_tmpr(:,:,:,:)
  integer                       :: p,q,k
  integer                       :: r,s,t,u,v
  integer                       :: pq,rs
  integer                       :: istate
  double precision              :: t1,t2,t3,t4,t5,t6
  double precision, allocatable :: tmp_bi_int_3(:,:,:),tmp_bi_int_3_shared(:,:,:)
  double precision, allocatable :: tmp_2rdm_3(:,:,:),tmp_2rdm_3_shared(:,:,:)
  double precision, allocatable :: tmp_accu(:,:)
  double precision, allocatable :: tmp_accu_shared(:,:), tmp_accu_1_shared(:)
  double precision, allocatable :: tmp_h_pppp(:), tmp_h_pqpq(:,:), tmp_h_pqqp(:,:)
 
  ! Function
  double precision :: get_two_e_integral

  print*,''
  print*,'--- diagonal hessian---'
  print*,'Use the diagonal hessian'

  ! Allocation of shared arrays
  !allocate(hessian(mo_num,mo_num,mo_num,mo_num))!,h_tmpr(mo_num,mo_num,mo_num,mo_num))
  allocate(tmp_h_pppp(mo_num),tmp_h_pqpq(mo_num,mo_num),tmp_h_pqqp(mo_num,mo_num))
  allocate(tmp_2rdm_3_shared(mo_num,mo_num,mo_num))
  allocate(tmp_bi_int_3_shared(mo_num,mo_num,mo_num))
  allocate(tmp_accu_1_shared(mo_num),tmp_accu_shared(mo_num,mo_num))

  ! OMP
  call omp_set_max_active_levels(1)

  !$OMP PARALLEL                                                               &
      !$OMP PRIVATE(                                                           &
      !$OMP   p,q,r,s, tmp_accu,k,                                               &
      !$OMP   u,v,t, tmp_bi_int_3, tmp_2rdm_3)                                 &
      !$OMP SHARED(H, tmp_h_pppp, tmp_h_pqpq, tmp_h_pqqp,      &
      !$OMP  mo_num,n, mo_one_e_integrals, one_e_dm_mo,                        &
      !$OMP  tmp_bi_int_3_shared, tmp_2rdm_3_shared,tmp_accu_shared,           &
      !$OMP  tmp_accu_1_shared,two_e_dm_mo,mo_integrals_map,t1,t2,t3,t4,t5,t6) &
      !$OMP DEFAULT(NONE)

  ! Allocation of the private arrays
  allocate(tmp_2rdm_3(mo_num,mo_num,mo_num),tmp_bi_int_3(mo_num,mo_num,mo_num))
  allocate(tmp_accu(mo_num,mo_num))

Initialization of the arrays

  !!$OMP DO
  !do s = 1,mo_num
  !  do r = 1, mo_num
  !    do q = 1, mo_num
  !      do p = 1, mo_num
  !        hessian(p,q,r,s) = 0d0
  !      enddo
  !    enddo
  !  enddo
  !enddo
  !!$OMP END DO
  
  !$OMP DO
  do p = 1, mo_num
    tmp_h_pppp(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_h_pqpq(p,q) = 0d0
    enddo
  enddo
  !$OMP END DO
   
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_h_pqqp(p,q) = 0d0
    enddo
  enddo
  !$OMP END DO
 
  !$OMP MASTER
  CALL wall_TIME(t1)
  !$OMP END MASTER

Line 1, term 1

\begin{align*} \frac{1}{2} \sum_u \delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s))) then

if (q==r) then do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &

  • mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))

enddo endif endif enddo enddo enddo enddo

With optimization :

Part 1 : p=r and q=s and q=r

hessian(p,q,r,s) -> hessian(p,p,p,p)

0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &

  • mo_one_e_integrals(s,u) * one_e_dm_mo(p,u)) = 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,p) &
  • mo_one_e_integrals(p,u) * one_e_dm_mo(p,u)) = mo_one_e_integrals(u,p) * one_e_dm_mo(u,p)
  !$OMP MASTER
  CALL wall_TIME(t4) 
  !$OMP END MASTER

  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do p = 1, mo_num
    do u = 1, mo_num

      tmp_accu_1_shared(p) = tmp_accu_1_shared(p) + mo_one_e_integrals(u,p) * one_e_dm_mo(u,p)

    enddo
  enddo
  !$OMP END DO
  
  !$OMP DO
  do p = 1, mo_num
    tmp_h_pppp(p) = tmp_h_pppp(p) + tmp_accu_1_shared(p)
  enddo
  !$OMP END DO

Part 2 : q=r and p=s and q=r

hessian(p,q,r,s) -> hessian(p,q,q,p)

0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &

  • mo_one_e_integrals(s,u) * one_e_dm_mo(p,u)) = 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,p) &
  • mo_one_e_integrals(p,u) * one_e_dm_mo(p,u)) = mo_one_e_integrals(u,p) * one_e_dm_mo(u,p)
  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do p = 1, mo_num
    do u = 1, mo_num

      tmp_accu_1_shared(p) = tmp_accu_1_shared(p) + mo_one_e_integrals(u,p) * one_e_dm_mo(u,p)

    enddo
  enddo
  !$OMP END DO
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) + tmp_accu_1_shared(p)

    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6= t5-t4
  print*,'l1 1',t6
  !$OMP END MASTER

Line 1, term 2

\begin{align*} \frac{1}{2} \sum_u \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_r^u) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s))) then

if (p==s) then do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &

  • mo_one_e_integrals(q,u) * one_e_dm_mo(r,u))

enddo endif endif enddo enddo enddo enddo

Part 1 : p=r and q=s and p=s

hessian(p,q,r,s) -> hessian(p,p,p,p)

0.5d0 * (& mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &

  • mo_one_e_integrals(q,u) * one_e_dm_mo(r,u)) = 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,p) &
  • mo_one_e_integrals(p,u) * one_e_dm_mo(p,u)) = mo_one_e_integrals(u,p) * one_e_dm_mo(u,p)
  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER  

  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0 
  enddo
  !$OMP END DO

  !$OMP DO
  do p = 1, mo_num
    do u = 1, mo_num

      tmp_accu_1_shared(p) = tmp_accu_1_shared(p) +  mo_one_e_integrals(u,p) * one_e_dm_mo(u,p) 

    enddo
  enddo
  !$OMP END DO
  
  !$OMP DO
  do p = 1, mo_num

    tmp_h_pppp(p) = tmp_h_pppp(p) + tmp_accu_1_shared(p)

  enddo
  !$OMP END DO

Part 2 : q=r and p=s and p=s

hessian(p,q,r,s) -> hessian(p,q,q,p)

0.5d0 * (& mo_one_e_integrals(u,r) * one_e_dm_mo(u,q) &

  • mo_one_e_integrals(q,u) * one_e_dm_mo(r,u)) = 0.5d0 * ( & mo_one_e_integrals(u,q) * one_e_dm_mo(u,q) &
  • mo_one_e_integrals(q,u) * one_e_dm_mo(q,u)) = mo_one_e_integrals(u,q) * one_e_dm_mo(u,q)
  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do u = 1, mo_num

      tmp_accu_1_shared(q) = tmp_accu_1_shared(q) + mo_one_e_integrals(u,q) * one_e_dm_mo(u,q)

    enddo
  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) + tmp_accu_1_shared(q)

    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6= t5-t4
  print*,'l1 2',t6
  !$OMP END MASTER

Line 1, term 3

\begin{align*} -(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s))) then

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • mo_one_e_integrals(s,p) * one_e_rdm_mo(r,q) &
  • mo_one_e_integrals(q,r) * one_e_rdm_mo(p,s)

endif enddo enddo enddo enddo

With optimization :

Part 1 : p=r and q=s

hessian(p,q,r,s) -> hessian(p,q,p,q)

  • mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
  • mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)

=

  • mo_one_e_integrals(q,p) * one_e_dm_mo(p,q) &
  • mo_one_e_integrals(q,p) * one_e_dm_mo(p,q)

=

  • 2d0 mo_one_e_integrals(q,p) * one_e_dm_mo(p,q)
  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER 

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqpq(p,q) = tmp_h_pqpq(p,q) &
        - 2d0 * mo_one_e_integrals(q,p) * one_e_dm_mo(p,q)

    enddo
  enddo
  !$OMP END DO

Part 2 : q=r and p=s

hessian(p,q,r,s) -> hessian(p,q,p,q)

  • mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
  • mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)

=

  • mo_one_e_integrals(q,p) * one_e_dm_mo(p,q) &
  • mo_one_e_integrals(q,p) * one_e_dm_mo(p,q)

=

  • 2d0 mo_one_e_integrals(q,p) * one_e_dm_mo(p,q)
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) &
        - 2d0 * mo_one_e_integrals(p,p) * one_e_dm_mo(q,q)

    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6= t5-t4
  print*,'l1 3',t6
  !$OMP END MASTER

Line 2, term 1

\begin{align*} \frac{1}{2} \sum_{tuv} \delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} + v_{uv}^{st} \Gamma_{pt}^{uv}) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s))) then

if (q==r) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &

  • get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))

enddo enddo enddo endif endif enddo enddo enddo enddo

With optimization :

Part 1 : p=r and q=s and q=r

hessian(p,q,r,s) -> hessian(p,p,p,p)

0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &

  • get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v)) = 0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t) &
  • get_two_e_integral(p,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v)) = get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t)

Just re-order the index and use 3D temporary arrays for optimal memory accesses.

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do t = 1, mo_num 

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_bi_int_3(u,v,p) = get_two_e_integral(u,v,p,t,mo_integrals_map)

        enddo
      enddo
    enddo 

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,t)

        enddo
      enddo
    enddo

    !$OMP CRITICAL 
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_accu_1_shared(p) = tmp_accu_1_shared(p) &
          + tmp_bi_int_3(u,v,p) * tmp_2rdm_3(u,v,p) 

        enddo
      enddo
    enddo
    !$OMP END CRITICAL 

  enddo
  !$OMP END DO

  !$OMP DO
  do p =1, mo_num

    tmp_h_pppp(p) = tmp_h_pppp(p) + tmp_accu_1_shared(p)

  enddo
  !$OMP END DO

Part 2 : q=r and p=s and q=r

hessian(p,q,r,s) -> hessian(p,q,q,p)

0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &

  • get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v)) = 0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t) &
  • get_two_e_integral(p,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v)) = get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t)

Just re-order the index and use 3D temporary arrays for optimal memory accesses.

  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do t = 1, mo_num

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_bi_int_3(u,v,p) = get_two_e_integral(u,v,p,t,mo_integrals_map)

        enddo
      enddo
    enddo

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,t)

        enddo
      enddo
    enddo

    !$OMP CRITICAL
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_accu_1_shared(p) = tmp_accu_1_shared(p) + & 
            tmp_bi_int_3(u,v,p) * tmp_2rdm_3(u,v,p)

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) + tmp_accu_1_shared(p) 

    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6 = t5-t4
  print*,'l2 1',t6
  !$OMP END MASTER

Line 2, term 2

\begin{align*} \frac{1}{2} \sum_{tuv} \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt}) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s))) then

if (p==s) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &

  • get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))

enddo enddo enddo endif endif enddo enddo enddo enddo

With optimization :

Part 1 : p=r and q=s and p=s

hessian(p,q,r,s) -> hessian(p,p,p,p)

0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &

  • get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t)) = 0.5d0 * ( & get_two_e_integral(p,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v) &
  • get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t)) = get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,p,t)

Just re-order the index and use 3D temporary arrays for optimal memory accesses.

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do p = 1, mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO   

  !$OMP DO
  do t = 1, mo_num

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_bi_int_3(u,v,p) = get_two_e_integral(u,v,p,t,mo_integrals_map)

        enddo
      enddo
    enddo

    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,t)

        enddo
      enddo
    enddo

    !$OMP CRITICAL
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_accu_1_shared(p) = tmp_accu_1_shared(p) +&
            tmp_bi_int_3(u,v,p) * tmp_2rdm_3(u,v,p)

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP DO
  do p = 1, mo_num

    tmp_h_pppp(p) = tmp_h_pppp(p) + tmp_accu_1_shared(p)

  enddo
  !$OMP END DO

Part 2 : q=r and p=s and p=s

hessian(p,q,r,s) -> hessian(p,q,q,p)

0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &

  • get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t)) = 0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(q,t,u,v) &
  • get_two_e_integral(u,v,q,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t)) = get_two_e_integral(u,v,q,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t)

Just re-order the index and use 3D temporary arrays for optimal memory accesses.

  !$OMP DO
  do p = 1,mo_num
    tmp_accu_1_shared(p) = 0d0
  enddo
  !$OMP END DO

  !$OMP DO
  do t = 1, mo_num

    do q = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_bi_int_3(u,v,q) = get_two_e_integral(u,v,q,t,mo_integrals_map)

        enddo
      enddo
    enddo

    do q = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_2rdm_3(u,v,q) = two_e_dm_mo(u,v,q,t)

        enddo
      enddo
    enddo
    
    !$OMP CRITICAL
    do q = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num
 
          tmp_accu_1_shared(q) = tmp_accu_1_shared(q) +&
           tmp_bi_int_3(u,v,q) * tmp_2rdm_3(u,v,q)

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num
 
      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) + tmp_accu_1_shared(p)
 
    enddo
  enddo
  !$OMP END DO   

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6 = t5-t4
  print*,'l2 2',t6
  !$OMP END MASTER

Line 3, term 1

\begin{align*} \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{pr}^{uv}) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)))) then

do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
  • get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)

enddo enddo endif

enddo enddo enddo enddo

With optimization

Part 1 : p=r and q=s

hessian(p,q,r,s) -> hessian(p,q,p,q)

get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &

  • get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v) = get_two_e_integral(u,v,p,p,mo_integrals_map) * two_e_dm_mo(u,v,q,q) &
  • get_two_e_integral(q,q,u,v,mo_integrals_map) * two_e_dm_mo(p,p,u,v) = 2d0 * get_two_e_integral(u,v,p,p,mo_integrals_map) * two_e_dm_mo(u,v,q,q)

Arrays of the kind (u,v,p,p) can be transform in 4D arrays (u,v,p). Using u,v as one variable a matrix multiplication appears. $$c_{p,q} = \sum_{uv} a_{p,uv} b_{uv,q}$$

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do q = 1, mo_num
    do v = 1, mo_num
      do u = 1, mo_num

        tmp_2rdm_3_shared(u,v,q) = two_e_dm_mo(u,v,q,q)

      enddo
    enddo
  enddo
  !$OMP END DO 

  !$OMP DO
  do p = 1, mo_num
    do v = 1, mo_num
      do u = 1, mo_num

        tmp_bi_int_3_shared(u,v,p) = get_two_e_integral(u,v,p,p,mo_integrals_map)

      enddo
    enddo
  enddo
  !$OMP END DO

  call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3_shared,&
             mo_num*mo_num, tmp_2rdm_3_shared, mo_num*mo_num, 0d0, tmp_accu, mo_num)

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqpq(p,q) = tmp_h_pqpq(p,q) + tmp_accu(p,q) + tmp_accu(q,p)

    enddo
  enddo
  !$OMP END DO

Part 2 : q=r and p=s

hessian(p,q,r,s) -> hessian(p,q,q,p)

get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &

  • get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v) = get_two_e_integral(u,v,p,q,mo_integrals_map) * two_e_dm_mo(u,v,q,p) &
  • get_two_e_integral(q,p,u,v,mo_integrals_map) * two_e_dm_mo(p,q,u,v) = 2d0 * get_two_e_integral(u,v,p,q,mo_integrals_map) * two_e_dm_mo(u,v,q,p)

Just re-order the indexes and use 3D temporary arrays for optimal memory accesses.

  !$OMP MASTER
  call wall_time(t4)
  !$OMP END MASTER

  !$OMP DO
  do q = 1, mo_num
    
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_bi_int_3(u,v,p) = 2d0 * get_two_e_integral(u,v,q,p,mo_integrals_map)

        enddo
      enddo 
    enddo
    
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,q)

        enddo
      enddo
    enddo
    
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) &
            + tmp_bi_int_3(u,v,p) * tmp_2rdm_3(u,v,p)

        enddo
      enddo
    enddo

  enddo 
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6= t5-t4
  print*,'l3 1',t6
  !$OMP END MASTER

Line 3, term 2

\begin{align*} - \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts}) \end{align*}

Without optimization :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

! Permutations if (((p==r) .and. (q==s)) .or. ((q==r) .and. (p==s)) & .or. ((p==s) .and. (q==r))) then

do t = 1, mo_num do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
  • get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
  • get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
  • get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)

enddo enddo

endif

enddo enddo enddo enddo

With optimization :

Part 1 : p=r and q=s

hessian(p,q,r,s) -> hessian(p,q,p,q)

  • get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
  • get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
  • get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
  • get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)

=

  • get_two_e_integral(q,t,p,u,mo_integrals_map) * two_e_dm_mo(p,t,q,u) &
  • get_two_e_integral(t,q,p,u,mo_integrals_map) * two_e_dm_mo(t,p,q,u) &
  • get_two_e_integral(q,u,p,t,mo_integrals_map) * two_e_dm_mo(p,u,q,t) &
  • get_two_e_integral(q,u,t,p,mo_integrals_map) * two_e_dm_mo(p,u,t,q)

=

  • 2d0 * get_two_e_integral(q,t,p,u,mo_integrals_map) * two_e_dm_mo(p,t,q,u) &
  • 2d0 * get_two_e_integral(t,q,p,u,mo_integrals_map) * two_e_dm_mo(t,p,q,u)

=

  • 2d0 * get_two_e_integral(q,u,p,t,mo_integrals_map) * two_e_dm_mo(q,u,p,t) &
  • 2d0 * get_two_e_integral(t,q,p,u,mo_integrals_map) * two_e_dm_mo(t,p,q,u)

Just re-order the indexes and use 3D temporary arrays for optimal memory accesses.

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !----------
  ! Part 1.1
  !----------
  ! - 2d0 * get_two_e_integral(q,u,p,t,mo_integrals_map) * two_e_dm_mo(q,u,p,t)
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_accu_shared(p,q) = 0d0
    enddo
  enddo 
  !$OMP END DO

  !$OMP DO
  do t = 1, mo_num

    do p = 1, mo_num
      do u = 1, mo_num
        do q = 1, mo_num

          tmp_bi_int_3(q,u,p) = 2d0 * get_two_e_integral(q,u,p,t,mo_integrals_map)

        enddo
      enddo
    enddo

    do p = 1, mo_num
      do u = 1, mo_num
        do q = 1, mo_num

           tmp_2rdm_3(q,u,p) = two_e_dm_mo(q,u,p,t)

        enddo
      enddo
    enddo

    !$OMP CRITICAL
    do p = 1, mo_num
      do u = 1, mo_num
        do q = 1, mo_num

           tmp_accu_shared(p,q) = tmp_accu_shared(p,q) &
           - tmp_bi_int_3(q,u,p) * tmp_2rdm_3(q,u,p) 

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqpq(p,q) = tmp_h_pqpq(p,q) + tmp_accu_shared(p,q)

    enddo
  enddo
  !$OMP END DO

Just re-order the indexes and use 3D temporary arrays for optimal memory accesses.

  !--------
  ! Part 1.2
  !-------- 
  ! - 2d0 * get_two_e_integral(t,q,p,u,mo_integrals_map) * two_e_dm_mo(t,p,q,u)
  
  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_accu_shared(p,q) = 0d0
    enddo
  enddo
  !$OMP END DO

  !$OMP DO
  do u = 1, mo_num
    
    do p = 1, mo_num
      do q = 1, mo_num
         do t = 1, mo_num

           tmp_bi_int_3(t,q,p) = 2d0*get_two_e_integral(t,q,p,u,mo_integrals_map)

         enddo
      enddo
    enddo

    do p= 1, mo_num
      do q = 1, mo_num
         do t = 1, mo_num

            tmp_2rdm_3(t,q,p) = two_e_dm_mo(t,p,q,u)
            
         enddo
      enddo
    enddo
 
    !$OMP CRITICAL
    do q = 1, mo_num
      do p = 1, mo_num
        do t = 1, mo_num

           tmp_accu_shared(p,q) = tmp_accu_shared(p,q) &
           - tmp_bi_int_3(t,q,p) * tmp_2rdm_3(t,q,p)

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqpq(p,q) = tmp_h_pqpq(p,q) + tmp_accu_shared(p,q)

    enddo
  enddo
  !$OMP END DO

Part 2 : q=r and p=s

hessian(p,q,r,s) -> hessian(p,q,p,q)

  • get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
  • get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
  • get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
  • get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)

=

  • get_two_e_integral(p,t,p,u,mo_integrals_map) * two_e_dm_mo(q,t,q,u) &
  • get_two_e_integral(t,p,p,u,mo_integrals_map) * two_e_dm_mo(t,q,q,u) &
  • get_two_e_integral(q,u,q,t,mo_integrals_map) * two_e_dm_mo(p,u,p,t) &
  • get_two_e_integral(q,u,t,q,mo_integrals_map) * two_e_dm_mo(p,u,t,p)

=

  • get_two_e_integral(p,t,p,u,mo_integrals_map) * two_e_dm_mo(q,t,q,u) &
  • get_two_e_integral(q,t,q,u,mo_integrals_map) * two_e_dm_mo(p,t,p,u) &
  • get_two_e_integral(t,u,p,p,mo_integrals_map) * two_e_dm_mo(t,q,q,u) &
  • get_two_e_integral(t,u,q,q,mo_integrals_map) * two_e_dm_mo(t,p,p,u)

=

  • get_two_e_integral(t,p,u,p,mo_integrals_map) * two_e_dm_mo(t,q,u,q) &
  • get_two_e_integral(t,q,u,q,mo_integrals_map) * two_e_dm_mo(p,t,p,u) &
  • get_two_e_integral(t,u,p,p,mo_integrals_map) * two_e_dm_mo(q,u,t,q) &
  • get_two_e_integral(t,u,q,q,mo_integrals_map) * two_e_dm_mo(p,u,t,p)

Arrays of the kind (t,p,u,p) can be transformed in 3D arrays. By doing so and using t,u as one variable, a matrix multiplication appears : $$c_{p,q} = \sum_{tu} a_{p,tu} b_{tu,q}$$

  !----------
  ! Part 2.1
  !----------
  ! - get_two_e_integral(t,p,u,p,mo_integrals_map) * two_e_dm_mo(t,q,u,q) &
  ! - get_two_e_integral(t,q,u,q,mo_integrals_map) * two_e_dm_mo(p,t,p,u)

  !$OMP DO
  do q = 1, mo_num
    do u = 1, mo_num
      do t = 1, mo_num

        tmp_2rdm_3_shared(t,u,q) = two_e_dm_mo(t,q,u,q)

      enddo
    enddo
  enddo
  !$OMP END DO

  !$OMP DO
  do p = 1, mo_num
    do u = 1, mo_num
      do t = 1, mo_num

        tmp_bi_int_3_shared(t,u,p) = get_two_e_integral(t,p,u,p,mo_integrals_map)

      enddo
    enddo
  enddo
  !$OMP END DO

  call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3_shared,&
             mo_num*mo_num, tmp_2rdm_3_shared, mo_num*mo_num, 0d0, tmp_accu, mo_num)

  !$OMP DO
  do p = 1, mo_num
    do q = 1, mo_num

      tmp_h_pqqp(q,p) = tmp_h_pqqp(q,p) - tmp_accu(q,p) - tmp_accu(p,q)

    enddo
  enddo
  !$OMP END DO

Arrays of the kind (t,u,p,p) can be transformed in 3D arrays. By doing so and using t,u as one variable, a matrix multiplication appears : $$c_{p,q} = \sum_{tu} a_{p,tu} b_{tu,q}$$

  !--------
  ! Part 2.2 
  !--------
  ! - get_two_e_integral(t,u,p,p,mo_integrals_map) * two_e_dm_mo(q,u,t,q) &
  ! - get_two_e_integral(t,u,q,q,mo_integrals_map) * two_e_dm_mo(p,u,t,p)

  !$OMP DO
  do p = 1, mo_num
    do u = 1, mo_num
      do t = 1, mo_num

        tmp_bi_int_3_shared(t,u,p) = get_two_e_integral(t,u,p,p,mo_integrals_map)

      enddo
    enddo
  enddo
  !$OMP END DO

  !$OMP DO
  do q = 1, mo_num
    do t = 1, mo_num
      do u = 1, mo_num

        tmp_2rdm_3_shared(u,t,q) = two_e_dm_mo(q,u,t,q)

      enddo
    enddo
  enddo
  !$OMP END DO

  call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_2rdm_3_shared,&
             mo_num*mo_num, tmp_bi_int_3_shared, mo_num*mo_num, 0d0, tmp_accu, mo_num)

  !$OMP DO
  do q = 1, mo_num
    do p = 1, mo_num

      tmp_h_pqqp(p,q) = tmp_h_pqqp(p,q) - tmp_accu(p,q) - tmp_accu(q,p)

     enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6= t5-t4
  print*,'l3 2',t6
  !$OMP END MASTER  

  !$OMP MASTER
  CALL wall_TIME(t2)
  t2 = t2 - t1
  print*, 'Time to compute the hessian :', t2
  !$OMP END MASTER

Deallocation of private arrays

In the OMP section !

  deallocate(tmp_2rdm_3,tmp_bi_int_3)
  deallocate(tmp_accu)

Permutations

As we mentioned before there are two permutation operator in the formula : Hessian(p,q,r,s) = P_pq P_rs […] => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)

  !!$OMP DO
  !do p = 1, mo_num
  !  hessian(p,p,p,p) = hessian(p,p,p,p) + tmp_h_pppp(p)
  !enddo
  !!$OMP END DO

  !!$OMP DO
  !do q = 1, mo_num
  !  do p = 1, mo_num
  !    hessian(p,q,p,q) = hessian(p,q,p,q) + tmp_h_pqpq(p,q)
  !  enddo
  !enddo
  !!$OMP END DO
  !
  !!$OMP DO
  !do q = 1, mo_num
  !  do p = 1, mo_num
  !    hessian(p,q,q,p) = hessian(p,q,q,p) + tmp_h_pqqp(p,q)
  !  enddo
  !enddo
  !!$OMP END DO

  !!$OMP DO
  !do s = 1, mo_num
  !  do r = 1, mo_num
  !    do q = 1, mo_num
  !      do p = 1, mo_num

  !        h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))

  !      enddo
  !    enddo
  !  enddo
  !enddo
  !!$OMP END DO

4D -> 2D matrix

We need a 2D matrix for the Newton method's. Since the Hessian is "antisymmetric" : $$H_{pq,rs} = -H_{rs,pq}$$ We can write it as a 2D matrix, N by N, with N = mo_num(mo_num-1)/2 with p<q and r<s

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do pq = 1, n
    call vec_to_mat_index(pq,p,q)
    do rs = 1, n
      call vec_to_mat_index(rs,r,s)
      !H(pq,rs) = h_tmpr(p,q,r,s)
      if (pq == rs) then
        k = pq
        if (p == r) then
          H(k) = tmp_h_pqpq(p,q) + tmp_h_pqpq(q,p) - tmp_h_pqqp(p,q) - tmp_h_pqqp(q,p)
        elseif (p == s) then
          H(k) = - tmp_h_pqpq(p,q) - tmp_h_pqpq(q,p) + tmp_h_pqqp(p,q) + tmp_h_pqqp(q,p)
        endif
      endif
    enddo
  enddo
  !$OMP END DO

  !!$OMP MASTER
  !call wall_TIME(t5)
  !t6 = t5-t4
  !print*,'4D -> 2D :',t6
  !!$OMP END MASTER

  !$OMP END PARALLEL
  call omp_set_max_active_levels(4)

  ! Display
  !if (debug) then 
  !  print*,'2D diag Hessian matrix'
  !  do pq = 1, n
  !    write(*,'(100(F10.5))') H(pq,:)
  !  enddo 
  !endif

Deallocation of shared arrays, end

  !deallocate(hessian)!,h_tmpr)
  deallocate(tmp_h_pppp,tmp_h_pqpq,tmp_h_pqqp)
  deallocate(tmp_accu_1_shared, tmp_accu_shared) 
 
  print*,'---diagonal_hessian'

end subroutine