mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-04-28 03:04:42 +02:00
2900 lines
82 KiB
Org Mode
2900 lines
82 KiB
Org Mode
* Orbital localization
|
||
|
||
Molecular orbitals localization
|
||
|
||
** Doc
|
||
|
||
The program localizes the orbitals in function of their mo_class:
|
||
- core MOs
|
||
- inactive MOs
|
||
- active MOs
|
||
- virtual MOs
|
||
- deleted MOs -> no orbital localization
|
||
|
||
Core MOs are localized with core MOs, inactives MOs are localized with
|
||
inactives MOs and so on. But deleted orbitals are not localized.
|
||
|
||
WARNING:
|
||
- The user MUST SPECIFY THE MO CLASSES, otherwise if default mo class
|
||
is false the localization will be done for all the orbitals between
|
||
them, so the occupied and virtual MOs will be combined together
|
||
which is clearly not what we want to do. If default lpmo class is true
|
||
the localization will be done for the core, occupied and virtual
|
||
orbitals, but pay attention the mo_class are not deleted after...
|
||
- The mo class is not important (except "deleted") because it is not
|
||
link to the kind of MOs for CASSCF or CIPSI. It is just a way to
|
||
separate the MOs in order to localize them separetely, for example
|
||
to separate the core MOs, the occupied MOs and the virtuals MOs.
|
||
- The user MUST CHANGE THE MO CLASSES AFTER THE LOCALIZATION in order
|
||
to have the right mo class for his next calculation...
|
||
|
||
For more information on the mo_class:
|
||
lpqp set_mo_class -h
|
||
|
||
*** Foster-Boys localization
|
||
Foster-Boys localization:
|
||
- cite Foster
|
||
Boys, S. F., 1960, Rev. Mod. Phys. 32, 296.
|
||
DOI:https://doi.org/10.1103/RevModPhys.32.300
|
||
Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules,
|
||
and the Solid State, edited by P.-O. Löwdin (Academic
|
||
Press, New York), p. 253.
|
||
Daniel A. Kleier, Thomas A. Halgren, John H. Hall Jr., and William
|
||
N. Lipscomb, J. Chem. Phys. 61, 3905 (1974)
|
||
doi: 10.1063/1.1681683
|
||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Comput. Chem. 2013, 34,
|
||
1456– 1462. DOI: 10.1002/jcc.23281
|
||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Theory
|
||
Comput. 2012, 8, 9, 3137–3146
|
||
DOI: https://doi.org/10.1021/ct300473g
|
||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Phys. 137, 224114
|
||
(2012)
|
||
DOI: https://doi.org/10.1063/1.4769866
|
||
Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt
|
||
Rev. Mod. Phys. 84, 1419
|
||
https://doi.org/10.1103/RevModPhys.84.1419
|
||
|
||
The Foster-Boys localization is a method to generate localized MOs
|
||
(LMOs) by minimizing the Foster-Boys criterion:
|
||
$$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r |
|
||
\phi_i >^2 \right] $$.
|
||
In fact it is equivalent to maximise
|
||
$$ C_2 = \sum_{i>j, \ i=1}^N \left[ < \phi_i | r | \phi_i > - <
|
||
\phi_j | r | \phi_j > \left]^2$$
|
||
or
|
||
$$ C_3 = \sum_{i=1}^N \left[ < \phi_i | r | \phi_i > \right]^2.$$
|
||
|
||
Noting
|
||
$$A_{ii} = < \phi_i | r^2 | \phi_i > $$
|
||
$$B_{ii} = < \phi_i | r | \phi_i > $$
|
||
|
||
$$ \beta = (B_{pp} - B_{qq})^2 - 4 B_{pq}^2 $$
|
||
$$ \gamma = 4 B_{pq} (B_{pp} - B_{qq}) $$
|
||
|
||
\begin{align*}
|
||
C_{FB}(\theta) &= \sum_{i=1}^N \left[ A_{ii} - B_{ii}^2 \right] \\
|
||
&- \left[ A_{pp} - B_{pp}^2 + A_{qq} - B_{qq}^2 \right] \\
|
||
&+ \left[ A_{pp} + A_{qq} - B_{pp}^2 - B_{qq}^2
|
||
+ \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \right] \\
|
||
&= C_1(\theta=0) + \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma]
|
||
\end{align*}
|
||
|
||
The derivatives are:
|
||
\begin{align*}
|
||
\frac{\partial C_{FB}(\theta)}{\partial \theta} = \beta \sin(4\theta) + \gamma \cos(4 \theta)
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
\frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2} = 4 \beta \cos(4\theta) - 4 \gamma \sin(4 \theta)
|
||
\end{align*}
|
||
|
||
Similarly:
|
||
\begin{align*}
|
||
C_3(\theta) &= \sum_{i=1}^N [B_{ii}^2] \\
|
||
&- B_{pp}^2 - B_{qq}^2 \\
|
||
&+ B_{pp}^2 + B_{qq}^2 - \frac{1}{4} [(1-\cos(4\theta) \beta + \sin(4\theta) \gamma] \\
|
||
&= C_3(\theta=0) - \frac{1}{4} [(1-\cos(4\theta)) \beta + \sin(4\theta) \gamma]
|
||
\end{align*}
|
||
|
||
The derivatives are:
|
||
\begin{align*}
|
||
\frac{\partial C_3(\theta)}{\partial \theta} = - \beta \sin(4\theta) - \gamma \cos(4 \theta)
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
\frac{\partial^2 C_3(\theta)}{\partial \theta^2} = - 4 \beta \cos(4\theta) + 4 \gamma \sin(4 \theta)
|
||
\end{align*}
|
||
|
||
And since we compute the derivatives around $\theta = 0$ (around the
|
||
actual position) we have:
|
||
\begin{align*}
|
||
\left. \frac{\partial{C_{FB}(\theta)}}{\partial \theta}\right|_{\theta=0} = \gamma
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
\left. \frac{\partial^2 C_{FB}(\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta
|
||
\end{align*}
|
||
|
||
Locality of the orbitals:
|
||
- cite Hoyvik
|
||
As the Foster-Boys method tries to minimize the sum of the second
|
||
moment MO spread, the locality of each MO can be expressed as the
|
||
second moment of the MO spread. For the MO i, the locality criterion is
|
||
\begin{align*}
|
||
\sigma_i &= \sqrt{ <i|r^2|i> - <i|r|i>^2} \\
|
||
&= \sqrt{ <i|x^2|i> - <i|x|i>^2 + <i|y^2|i> - <i|y|i>^2 + <i|z^2|i> - <i|z|i>^2}
|
||
\end{align*}
|
||
|
||
|
||
*** Pipek-Mezey localization
|
||
-cite pipek mezey 1989
|
||
J. Pipek, P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)
|
||
DOI: 10.1063/1.456588
|
||
|
||
Foster-Boys localization does not preserve the $\sigma - \pi$ separation of the
|
||
MOs, it leads to "banana" orbitals. The Pipek-Mezey localization
|
||
normally preserves this separation.
|
||
|
||
The optimum functional $\mathcal{P}$ is obtained for the maximum of
|
||
$D^{-1}$
|
||
\begin{align*}
|
||
\mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2
|
||
\end{align*}
|
||
|
||
As for the Foster Boys localization, the change in the functional for
|
||
the rotation of two MOs can be obtained using very similar terms
|
||
\begin{align*}
|
||
\beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right)
|
||
\end{align*}
|
||
\begin{align*}
|
||
\gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right]
|
||
\end{align*}
|
||
The matrix element of the operator $P_A$ are obtained using
|
||
\begin{align*}
|
||
<\rho | \tilde{\mu}> = \delta_{\rho \mu}
|
||
\end{align*}
|
||
which leads to
|
||
\begin{align*}
|
||
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
|
||
\end{align*}
|
||
$\sum_{\rho}$ -> sum over all the AOs
|
||
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
|
||
$c^t$ -> expansion coefficient of orbital |t>
|
||
|
||
So similarly the first and second derivatives are
|
||
|
||
\begin{align*}
|
||
\left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM}
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
\left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM}
|
||
\end{align*}
|
||
|
||
** Localization procedure
|
||
|
||
Localization procedure:
|
||
|
||
To do the localization we compute the gradient and the
|
||
diagonal hessian of the Foster-Boys criterion with respect to the MO
|
||
rotations and we minimize it with the Newton method.
|
||
|
||
In order to avoid the problem of starting on a saddle point, the
|
||
localization procedure starts by giving a little kick in the MOs, by
|
||
putting "kick in mos" true, in order to break the symmetry and escape
|
||
from a possible saddle point.
|
||
|
||
In order to speed up the iteration we compute the gradient, the
|
||
diagonal hessian and the step in temporary matrices of the size
|
||
(number MOs in mo class by number MOs in mo class)
|
||
|
||
** Remarks
|
||
|
||
Variables:
|
||
|
||
The indexes i and j refere to the positions of the elements in
|
||
the "full space", i.e., the arrays containing elements for all the MOs,
|
||
but the indexes tmp_i and tmp_j to the positions of the elements in
|
||
the "reduced space/subspace", i.e., the arrays containing elements for
|
||
a restricted number of MOs.
|
||
Example:
|
||
The gradient for the localization of the core MOs can be expressed
|
||
as a vector of length mo_num*(mo_num-1)/2 with only
|
||
n_core_orb*(n_core_orb-1)/2 non zero elements, so it is more relevant
|
||
to use a vector of size n_act_orb*(n_core_orb-1)/2.
|
||
So here the gradient is a vector of size
|
||
tmp_list_size*(tmp_list_size)/2 where tmp_list_size is the number of
|
||
MOs is the corresponding mo class.
|
||
The same thing happened for the hessian, the matrix containing the
|
||
step and the rotation matrix, which are tmp_list_size by tmp_list_size
|
||
matrices.
|
||
|
||
Ex gradient for 4 core orbitales:
|
||
\begin{align*}
|
||
\begin{pmatrix}
|
||
0 & -a & -b & -d & \hdots & 0 \\
|
||
a & 0 & -c & -e & \hdots & 0 \\
|
||
b & c & 0 & -f & \hdots & 0 \\
|
||
d & e & f & 0 & \hdots & 0 \\
|
||
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
0 & 0 & 0 & 0 & \hdots & 0 \\
|
||
\end{pmatrix}
|
||
\Rightarrow
|
||
\begin{pmatrix}
|
||
a \\
|
||
b \\
|
||
c \\
|
||
e \\
|
||
f \\
|
||
0 \\
|
||
\vdots \\
|
||
0 \\
|
||
\end{pmatrix}
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
\begin{pmatrix}
|
||
0 & -a & -b & -d & \hdots & 0 \\
|
||
a & 0 & -c & -e & \hdots & 0 \\
|
||
b & c & 0 & -f & \hdots & 0 \\
|
||
d & e & f & 0 & \hdots & 0 \\
|
||
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
0 & 0 & 0 & 0 & \hdots & 0 \\
|
||
\end{pmatrix}
|
||
\Rightarrow
|
||
\begin{pmatrix}
|
||
0 & -a & -b & -d \\
|
||
a & 0 & -c & -e \\
|
||
b & c & 0 & -f \\
|
||
d & e & f & 0 \\
|
||
\end{pmatrix}
|
||
\Rightarrow
|
||
\begin{pmatrix}
|
||
a \\
|
||
b \\
|
||
c \\
|
||
e \\
|
||
f \\
|
||
\end{pmatrix}
|
||
\end{align*}
|
||
|
||
The same thing can be done if indexes of the orbitales are not
|
||
consecutives since it's done with lists of MOs:
|
||
|
||
\begin{align*}
|
||
\begin{pmatrix}
|
||
0 & -a & 0 & -b & -d & \hdots & 0 \\
|
||
a & 0 & 0 & -c & -e & \hdots & 0 \\
|
||
0 & 0 & 0 & 0 & 0 & \hdots & 0 \\
|
||
b & c & 0 & 0 & -f & \hdots & 0 \\
|
||
d & e & 0 & f & 0 & \hdots & 0 \\
|
||
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
0 & 0 & 0 & 0 & 0 & \hdots & 0 \\
|
||
\end{pmatrix}
|
||
\Rightarrow
|
||
\begin{pmatrix}
|
||
0 & -a & -b & -d \\
|
||
a & 0 & -c & -e \\
|
||
b & c & 0 & -f \\
|
||
d & e & f & 0 \\
|
||
\end{pmatrix}
|
||
\Rightarrow
|
||
\begin{pmatrix}
|
||
a \\
|
||
b \\
|
||
c \\
|
||
e \\
|
||
f \\
|
||
\end{pmatrix}
|
||
\end{align*}
|
||
|
||
The dipoles are updated using the "ao to mo" subroutine without the
|
||
"restore symmetry" which is actually in N^4 but can be rewrite in N^2
|
||
log(N^2).
|
||
The bottleneck of the program is normally N^3 with the matrix
|
||
multiplications/diagonalizations. The use of the full hessian can be
|
||
an improvement but it will scale in N^4...
|
||
|
||
** Program
|
||
|
||
#+BEGIN_SRC f90 org :tangle localization.irp.f
|
||
program localization
|
||
|
||
implicit none
|
||
|
||
call set_classes_loc
|
||
call run_localization
|
||
call unset_classes_loc
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
|
||
Variables:
|
||
| pre_rot(mo_num, mo_num) | double precision | Matrix for the pre rotation |
|
||
| R(mo_num,mo_num) | double precision | Rotation matrix |
|
||
| tmp_R(:,:) | double precision | Rottation matrix in a subsapce |
|
||
| prev_mos(ao_num, mo_num) | double precision | Previous mo_coef |
|
||
| spatial_extent(mo_num) | double precision | Spatial extent of the orbitals |
|
||
| criterion | double precision | Localization criterion |
|
||
| prev_criterion | double precision | Previous criterion |
|
||
| criterion_model | double precision | Estimated next criterion |
|
||
| rho | double precision | Ratio to measure the agreement between the model |
|
||
| | | and the reality |
|
||
| delta | double precision | Radisu of the trust region |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
| info | integer | for dsyev from Lapack |
|
||
| max_elem | double precision | maximal element in the gradient |
|
||
| v_grad(:) | double precision | Gradient |
|
||
| H(:,:) | double precision | Hessian (diagonal) |
|
||
| e_val(:) | double precision | Eigenvalues of the hessian |
|
||
| W(:,:) | double precision | Eigenvectors of the hessian |
|
||
| tmp_x(:) | double precision | Step in 1D (in a subaspace) |
|
||
| tmp_m_x(:,:) | double precision | Step in 2D (in a subaspace) |
|
||
| tmp_list(:) | double precision | List of MOs in a mo_class |
|
||
| i,j,k | integer | Indexes in the full MO space |
|
||
| tmp_i, tmp_j, tmp_k | integer | Indexes in a subspace |
|
||
| l | integer | Index for the mo_class |
|
||
| key(:) | integer | Key to sort the eigenvalues of the hessian |
|
||
| nb_iter | integer | Number of iterations |
|
||
| must_exit | logical | To exit the trust region loop |
|
||
| cancel_step | logical | To cancel a step |
|
||
| not_*converged | logical | To localize the different mo classes |
|
||
| t* | double precision | To measure the time |
|
||
| n | integer | mo_num*(mo_num-1)/2, number of orbital parameters |
|
||
| tmp_n | integer | dim_subspace*(dim_subspace-1)/2 |
|
||
| | | Number of dimension in the subspace |
|
||
|
||
Variables in qp_edit for the localization:
|
||
| localization_method |
|
||
| localization_max_nb_iter |
|
||
| default_mo_class |
|
||
| thresh_loc_max_elem_grad |
|
||
| kick_in_mos |
|
||
| angle_pre_rot |
|
||
|
||
+ all the variables for the trust region
|
||
|
||
Cf. qp_edit orbital optimization
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization.irp.f
|
||
subroutine run_localization
|
||
|
||
include 'pi.h'
|
||
|
||
BEGIN_DOC
|
||
! Orbital localization
|
||
END_DOC
|
||
|
||
implicit none
|
||
|
||
! Variables
|
||
double precision, allocatable :: pre_rot(:,:), R(:,:)
|
||
double precision, allocatable :: prev_mos(:,:), spatial_extent(:), tmp_R(:,:)
|
||
double precision :: criterion, norm_grad
|
||
integer :: i,j,k,l,p, tmp_i, tmp_j, tmp_k
|
||
integer :: info
|
||
integer :: n, tmp_n, tmp_list_size
|
||
double precision, allocatable :: v_grad(:), H(:), tmp_m_x(:,:), tmp_x(:),W(:),e_val(:)
|
||
double precision :: max_elem, t1, t2, t3, t4, t5, t6
|
||
integer, allocatable :: tmp_list(:), key(:)
|
||
double precision :: prev_criterion, rho, delta, criterion_model
|
||
integer :: nb_iter, nb_sub_iter
|
||
logical :: not_converged, not_core_converged
|
||
logical :: not_act_converged, not_inact_converged, not_virt_converged
|
||
logical :: use_trust_region, must_exit, cancel_step,enforce_step_cancellation
|
||
|
||
n = mo_num*(mo_num-1)/2
|
||
|
||
! Allocation
|
||
allocate(spatial_extent(mo_num))
|
||
allocate(pre_rot(mo_num, mo_num), R(mo_num, mo_num))
|
||
allocate(prev_mos(ao_num, mo_num))
|
||
|
||
! Locality before the localization
|
||
call compute_spatial_extent(spatial_extent)
|
||
|
||
! Choice of the method
|
||
print*,''
|
||
print*,'Localization method:',localization_method
|
||
if (localization_method == 'boys') then
|
||
print*,'Foster-Boys localization'
|
||
elseif (localization_method == 'pipek') then
|
||
print*,'Pipek-Mezey localization'
|
||
else
|
||
print*,'Unknown localization_method, please select boys or pipek'
|
||
call abort
|
||
endif
|
||
print*,''
|
||
|
||
! Localization criterion (FB, PM, ...) for each mo_class
|
||
print*,'### Before the pre rotation'
|
||
|
||
! Debug
|
||
if (debug_hf) then
|
||
print*,'HF energy:', HF_energy
|
||
endif
|
||
|
||
do l = 1, 4
|
||
if (l==1) then ! core
|
||
tmp_list_size = dim_list_core_orb
|
||
elseif (l==2) then ! act
|
||
tmp_list_size = dim_list_act_orb
|
||
elseif (l==3) then ! inact
|
||
tmp_list_size = dim_list_inact_orb
|
||
else ! virt
|
||
tmp_list_size = dim_list_virt_orb
|
||
endif
|
||
|
||
! Allocation tmp array
|
||
allocate(tmp_list(tmp_list_size))
|
||
|
||
! To give the list of MOs in a mo_class
|
||
if (l==1) then ! core
|
||
tmp_list = list_core
|
||
elseif (l==2) then
|
||
tmp_list = list_act
|
||
elseif (l==3) then
|
||
tmp_list = list_inact
|
||
else
|
||
tmp_list = list_virt
|
||
endif
|
||
|
||
if (tmp_list_size >= 2) then
|
||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||
print*,'Criterion:', criterion, mo_class(tmp_list(1))
|
||
endif
|
||
|
||
deallocate(tmp_list)
|
||
|
||
enddo
|
||
|
||
! Debug
|
||
!print*,'HF', HF_energy
|
||
|
||
#+END_SRC
|
||
|
||
** Loc
|
||
#+BEGIN_SRC f90 :comments org :tangle localization.irp.f
|
||
! Pre rotation, to give a little kick in the MOs
|
||
call apply_pre_rotation()
|
||
|
||
! Criterion after the pre rotation
|
||
! Localization criterion (FB, PM, ...) for each mo_class
|
||
print*,'### After the pre rotation'
|
||
|
||
! Debug
|
||
if (debug_hf) then
|
||
touch mo_coef
|
||
print*,'HF energy:', HF_energy
|
||
endif
|
||
|
||
do l = 1, 4
|
||
if (l==1) then ! core
|
||
tmp_list_size = dim_list_core_orb
|
||
elseif (l==2) then ! act
|
||
tmp_list_size = dim_list_act_orb
|
||
elseif (l==3) then ! inact
|
||
tmp_list_size = dim_list_inact_orb
|
||
else ! virt
|
||
tmp_list_size = dim_list_virt_orb
|
||
endif
|
||
|
||
if (tmp_list_size >= 2) then
|
||
! Allocation tmp array
|
||
allocate(tmp_list(tmp_list_size))
|
||
|
||
! To give the list of MOs in a mo_class
|
||
if (l==1) then ! core
|
||
tmp_list = list_core
|
||
elseif (l==2) then
|
||
tmp_list = list_act
|
||
elseif (l==3) then
|
||
tmp_list = list_inact
|
||
else
|
||
tmp_list = list_virt
|
||
endif
|
||
|
||
call criterion_localization(tmp_list_size, tmp_list,criterion)
|
||
print*,'Criterion:', criterion, trim(mo_class(tmp_list(1)))
|
||
|
||
deallocate(tmp_list)
|
||
endif
|
||
|
||
enddo
|
||
|
||
! Debug
|
||
!print*,'HF', HF_energy
|
||
|
||
print*,''
|
||
print*,'========================'
|
||
print*,' Orbital localization'
|
||
print*,'========================'
|
||
print*,''
|
||
|
||
!Initialization
|
||
not_converged = .TRUE.
|
||
|
||
! To do the localization only if there is at least 2 MOs
|
||
if (dim_list_core_orb >= 2) then
|
||
not_core_converged = .TRUE.
|
||
else
|
||
not_core_converged = .FALSE.
|
||
endif
|
||
|
||
if (dim_list_act_orb >= 2) then
|
||
not_act_converged = .TRUE.
|
||
else
|
||
not_act_converged = .FALSE.
|
||
endif
|
||
|
||
if (dim_list_inact_orb >= 2) then
|
||
not_inact_converged = .TRUE.
|
||
else
|
||
not_inact_converged = .FALSE.
|
||
endif
|
||
|
||
if (dim_list_virt_orb >= 2) then
|
||
not_virt_converged = .TRUE.
|
||
else
|
||
not_virt_converged = .FALSE.
|
||
endif
|
||
|
||
! Loop over the mo_classes
|
||
do l = 1, 4
|
||
|
||
if (l==1) then ! core
|
||
not_converged = not_core_converged
|
||
tmp_list_size = dim_list_core_orb
|
||
elseif (l==2) then ! act
|
||
not_converged = not_act_converged
|
||
tmp_list_size = dim_list_act_orb
|
||
elseif (l==3) then ! inact
|
||
not_converged = not_inact_converged
|
||
tmp_list_size = dim_list_inact_orb
|
||
else ! virt
|
||
not_converged = not_virt_converged
|
||
tmp_list_size = dim_list_virt_orb
|
||
endif
|
||
|
||
! Next iteration if converged = true
|
||
if (.not. not_converged) then
|
||
cycle
|
||
endif
|
||
|
||
! Allocation tmp array
|
||
allocate(tmp_list(tmp_list_size))
|
||
|
||
! To give the list of MOs in a mo_class
|
||
if (l==1) then ! core
|
||
tmp_list = list_core
|
||
elseif (l==2) then
|
||
tmp_list = list_act
|
||
elseif (l==3) then
|
||
tmp_list = list_inact
|
||
else
|
||
tmp_list = list_virt
|
||
endif
|
||
|
||
! Display
|
||
if (not_converged) then
|
||
print*,''
|
||
print*,'###', trim(mo_class(tmp_list(1))), 'MOs ###'
|
||
print*,''
|
||
endif
|
||
|
||
! Size for the 2D -> 1D transformation
|
||
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
|
||
|
||
! Without hessian + trust region
|
||
if (.not. localization_use_hessian) then
|
||
|
||
! Allocation of temporary arrays
|
||
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
|
||
|
||
! Criterion
|
||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||
|
||
! Init
|
||
nb_iter = 0
|
||
delta = 1d0
|
||
|
||
!Loop
|
||
do while (not_converged)
|
||
|
||
print*,''
|
||
print*,'***********************'
|
||
print*,'Iteration', nb_iter
|
||
print*,'***********************'
|
||
print*,''
|
||
|
||
! Angles of rotation
|
||
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||
tmp_m_x = - tmp_m_x * delta
|
||
|
||
! Rotation submatrix
|
||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||
info, enforce_step_cancellation)
|
||
|
||
! To ensure that the rotation matrix is unitary
|
||
if (enforce_step_cancellation) then
|
||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||
delta = delta * 0.5d0
|
||
cycle
|
||
else
|
||
delta = min(delta * 2d0, 1d0)
|
||
endif
|
||
|
||
! Full rotation matrix and application of the rotation
|
||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||
call apply_mo_rotation(R, prev_mos)
|
||
|
||
! Update the needed data
|
||
call update_data_localization()
|
||
|
||
! New criterion
|
||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||
print*,'Max elem :', max_elem
|
||
print*,'Delta :', delta
|
||
|
||
nb_iter = nb_iter + 1
|
||
|
||
! Exit
|
||
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
|
||
not_converged = .False.
|
||
endif
|
||
enddo
|
||
|
||
! Save the changes
|
||
call update_data_localization()
|
||
call save_mos()
|
||
TOUCH mo_coef
|
||
|
||
! Deallocate
|
||
deallocate(v_grad, tmp_m_x, tmp_list)
|
||
deallocate(tmp_R, tmp_x)
|
||
|
||
! Trust region
|
||
else
|
||
|
||
! Allocation of temporary arrays
|
||
allocate(v_grad(tmp_n), H(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||
allocate(tmp_x(tmp_n), W(tmp_n), e_val(tmp_n), key(tmp_n))
|
||
|
||
! ### Initialization ###
|
||
delta = 0d0 ! can be deleted (normally)
|
||
nb_iter = 0 ! Must start at 0 !!!
|
||
rho = 0.5d0 ! Must be 0.5
|
||
|
||
! Compute the criterion before the loop
|
||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||
|
||
! Loop until the convergence
|
||
do while (not_converged)
|
||
|
||
print*,''
|
||
print*,'***********************'
|
||
print*,'Iteration', nb_iter
|
||
print*,'***********************'
|
||
print*,''
|
||
|
||
! Gradient
|
||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
! Diagonal hessian
|
||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
! Diagonalization of the diagonal hessian by hands
|
||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||
do i = 1, tmp_n
|
||
e_val(i) = H(i)
|
||
enddo
|
||
|
||
! Key list for dsort
|
||
do i = 1, tmp_n
|
||
key(i) = i
|
||
enddo
|
||
|
||
! Sort of the eigenvalues
|
||
call dsort(e_val, key, tmp_n)
|
||
|
||
! Eigenvectors
|
||
W = 0d0
|
||
do i = 1, tmp_n
|
||
W(i) = dble(key(i))
|
||
enddo
|
||
|
||
! To enter in the loop just after
|
||
cancel_step = .True.
|
||
nb_sub_iter = 0
|
||
|
||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||
do while (cancel_step)
|
||
print*,'-----------------------------'
|
||
print*, mo_class(tmp_list(1))
|
||
print*,'Iteration:', nb_iter
|
||
print*,'Sub iteration:', nb_sub_iter
|
||
print*,'Max elem grad:', max_elem
|
||
print*,'-----------------------------'
|
||
|
||
! Hessian,gradient,Criterion -> x
|
||
call trust_region_step_w_expected_e(tmp_n,1, H, W, e_val, v_grad, prev_criterion, &
|
||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||
|
||
! Internal loop exit condition
|
||
if (must_exit) then
|
||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||
exit
|
||
endif
|
||
|
||
! 1D tmp -> 2D tmp
|
||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||
|
||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||
info, enforce_step_cancellation)
|
||
|
||
if (enforce_step_cancellation) then
|
||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||
rho = 0d0
|
||
cycle
|
||
endif
|
||
|
||
! tmp_R to R, subspace to full space
|
||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||
|
||
! Rotation of the MOs
|
||
call apply_mo_rotation(R, prev_mos)
|
||
|
||
! Update the things related to mo_coef
|
||
call update_data_localization()
|
||
|
||
! Update the criterion
|
||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||
|
||
! Criterion -> step accepted or rejected
|
||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||
criterion_model, rho, cancel_step)
|
||
|
||
! Cancellation of the step, previous MOs
|
||
if (cancel_step) then
|
||
mo_coef = prev_mos
|
||
endif
|
||
|
||
nb_sub_iter = nb_sub_iter + 1
|
||
enddo
|
||
!call save_mos() !### depend of the time for 1 iteration
|
||
|
||
! To exit the external loop if must_exti = .True.
|
||
if (must_exit) then
|
||
exit
|
||
endif
|
||
|
||
! Step accepted, nb iteration + 1
|
||
nb_iter = nb_iter + 1
|
||
|
||
! External loop exit conditions
|
||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||
not_converged = .False.
|
||
endif
|
||
if (nb_iter > localization_max_nb_iter) then
|
||
not_converged = .False.
|
||
endif
|
||
enddo
|
||
|
||
! Deallocation of temporary arrays
|
||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||
|
||
! Save the MOs
|
||
call save_mos()
|
||
TOUCH mo_coef
|
||
|
||
! Debug
|
||
if (debug_hf) then
|
||
touch mo_coef
|
||
print*,'HF energy:', HF_energy
|
||
endif
|
||
|
||
endif
|
||
enddo
|
||
|
||
! Seems unecessary
|
||
TOUCH mo_coef
|
||
|
||
! To sort the MOs using the diagonal elements of the Fock matrix
|
||
if (sort_mos_by_e) then
|
||
call run_sort_by_fock_energies()
|
||
endif
|
||
|
||
! Debug
|
||
if (debug_hf) then
|
||
touch mo_coef
|
||
print*,'HF energy:', HF_energy
|
||
endif
|
||
|
||
! Locality after the localization
|
||
call compute_spatial_extent(spatial_extent)
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
** Gathering
|
||
Gradient/hessian/criterion for the localization:
|
||
They are chosen in function of the localization method
|
||
|
||
Gradient:
|
||
|
||
qp_edit :
|
||
| localization_method | method for the localization |
|
||
|
||
Input:
|
||
| tmp_n | integer | Number of parameters in the MO subspace |
|
||
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
|
||
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
|
||
|
||
Output:
|
||
| v_grad(tmp_n) | double precision | Gradient in the subspace |
|
||
| max_elem | double precision | Maximal element in the gradient |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
|
||
include 'pi.h'
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the gradient of the chosen localization method
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||
|
||
if (localization_method == 'boys') then
|
||
call gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
!call gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
elseif (localization_method== 'pipek') then
|
||
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
else
|
||
print*,'Unkown method:'//localization_method
|
||
call abort
|
||
endif
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
Hessian:
|
||
|
||
Output:
|
||
| H(tmp_n,tmp_n) | double precision | Gradient in the subspace |
|
||
| max_elem | double precision | Maximal element in the gradient |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
include 'pi.h'
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the diagonal hessian of the chosen localization method
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: H(tmp_n)
|
||
|
||
if (localization_method == 'boys') then
|
||
call hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)
|
||
!call hessian_FB(tmp_n, tmp_list_size, tmp_list, H) ! non OMP for debugging
|
||
elseif (localization_method == 'pipek') then
|
||
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
|
||
else
|
||
print*,'Unkown method: '//localization_method
|
||
call abort
|
||
endif
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
Criterion:
|
||
|
||
Output:
|
||
| criterion | double precision | Criterion for the orbital localization |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
|
||
|
||
include 'pi.h'
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the localization criterion of the chosen localization method
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: criterion
|
||
|
||
if (localization_method == 'boys') then
|
||
call criterion_FB(tmp_list_size, tmp_list, criterion)
|
||
elseif (localization_method == 'pipek') then
|
||
!call criterion_PM(tmp_list_size, tmp_list,criterion)
|
||
call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
|
||
else
|
||
print*,'Unkown method: '//localization_method
|
||
call abort
|
||
endif
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
Subroutine to update the datas needed for the localization
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine update_data_localization()
|
||
|
||
include 'pi.h'
|
||
|
||
implicit none
|
||
|
||
if (localization_method == 'boys') then
|
||
! Update the dipoles
|
||
call ao_to_mo_no_sym(ao_dipole_x, ao_num, mo_dipole_x, mo_num)
|
||
call ao_to_mo_no_sym(ao_dipole_y, ao_num, mo_dipole_y, mo_num)
|
||
call ao_to_mo_no_sym(ao_dipole_z, ao_num, mo_dipole_z, mo_num)
|
||
elseif (localization_method == 'pipek') then
|
||
! Nothing required
|
||
else
|
||
print*,'Unkown method: '//localization_method
|
||
call abort
|
||
endif
|
||
end
|
||
#+END_SRC
|
||
|
||
Angles:
|
||
|
||
Output:
|
||
| tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
|
||
| max_elem | double precision | Maximal angle |
|
||
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||
|
||
include 'pi.h'
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the rotation angles between the MOs for the chosen localization method
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
|
||
|
||
if (localization_method == 'boys') then
|
||
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||
elseif (localization_method== 'pipek') then
|
||
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||
else
|
||
print*,'Unkown method: '//localization_method
|
||
call abort
|
||
endif
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
** Foster-Boys
|
||
*** Gradient
|
||
Input:
|
||
| tmp_n | integer | Number of parameters in the MO subspace |
|
||
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
|
||
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
|
||
|
||
Output:
|
||
| v_grad(tmp_n) | double precision | Gradient in the subspace |
|
||
| max_elem | double precision | Maximal element in the gradient |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
|
||
Internal:
|
||
| m_grad(tmp_n,tmp_n) | double precision | Gradient in the matrix form |
|
||
| i,j,k | integer | indexes in the full space |
|
||
| tmp_i,tmp_j,tmp_k | integer | indexes in the subspace |
|
||
| t* | double precision | to compute the time |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine gradient_FB(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the gradient for the Foster-Boys localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||
double precision, allocatable :: m_grad(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k
|
||
double precision :: t1, t2, t3
|
||
|
||
print*,''
|
||
print*,'---gradient_FB---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(m_grad(tmp_list_size, tmp_list_size))
|
||
|
||
! Calculation
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||
+4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||
+4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
|
||
enddo
|
||
enddo
|
||
|
||
! 2D -> 1D
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||
enddo
|
||
|
||
! Maximum element in the gradient
|
||
max_elem = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||
max_elem = ABS(v_grad(tmp_k))
|
||
endif
|
||
enddo
|
||
|
||
! Norm of the gradient
|
||
norm_grad = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||
enddo
|
||
norm_grad = dsqrt(norm_grad)
|
||
|
||
print*, 'Maximal element in the gradient:', max_elem
|
||
print*, 'Norm of the gradient:', norm_grad
|
||
|
||
! Deallocation
|
||
deallocate(m_grad)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in gradient_FB:', t3
|
||
|
||
print*,'---End gradient_FB---'
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
*** Gradient (OMP)
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine gradient_FB_omp(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
|
||
use omp_lib
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the gradient for the Foster-Boys localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||
double precision, allocatable :: m_grad(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k
|
||
double precision :: t1, t2, t3
|
||
|
||
print*,''
|
||
print*,'---gradient_FB_omp---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(m_grad(tmp_list_size, tmp_list_size))
|
||
|
||
! Initialization omp
|
||
call omp_set_max_active_levels(1)
|
||
|
||
!$OMP PARALLEL &
|
||
!$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k) &
|
||
!$OMP SHARED(tmp_n,tmp_list_size,m_grad,v_grad,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
|
||
!$OMP DEFAULT(NONE)
|
||
|
||
! Calculation
|
||
!$OMP DO
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
m_grad(tmp_i,tmp_j) = 4d0 * mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||
+4d0 * mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||
+4d0 * mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
|
||
enddo
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
! 2D -> 1D
|
||
!$OMP DO
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
!$OMP END PARALLEL
|
||
|
||
call omp_set_max_active_levels(4)
|
||
|
||
! Maximum element in the gradient
|
||
max_elem = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||
max_elem = ABS(v_grad(tmp_k))
|
||
endif
|
||
enddo
|
||
|
||
! Norm of the gradient
|
||
norm_grad = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||
enddo
|
||
norm_grad = dsqrt(norm_grad)
|
||
|
||
print*, 'Maximal element in the gradient:', max_elem
|
||
print*, 'Norm of the gradient:', norm_grad
|
||
|
||
! Deallocation
|
||
deallocate(m_grad)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in gradient_FB_omp:', t3
|
||
|
||
print*,'---End gradient_FB_omp---'
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
*** Hessian
|
||
|
||
Output:
|
||
| H(tmp_n,tmp_n) | double precision | Gradient in the subspace |
|
||
| max_elem | double precision | Maximal element in the gradient |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
|
||
Internal:
|
||
Internal:
|
||
| beta(tmp_n,tmp_n) | double precision | beta in the documentation below to compute the hesian |
|
||
| i,j,k | integer | indexes in the full space |
|
||
| tmp_i,tmp_j,tmp_k | integer | indexes in the subspace |
|
||
| t* | double precision | to compute the time |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine hessian_FB(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the diagonal hessian for the Foster-Boys localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: H(tmp_n)
|
||
double precision, allocatable :: beta(:,:)
|
||
integer :: i,j,tmp_k,tmp_i, tmp_j
|
||
double precision :: max_elem, t1,t2,t3
|
||
|
||
print*,''
|
||
print*,'---hessian_FB---'
|
||
|
||
call wall_time(t1)
|
||
|
||
|
||
! Allocation
|
||
allocate(beta(tmp_list_size,tmp_list_size))
|
||
|
||
! Calculation
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
|
||
+(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
|
||
+(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
|
||
enddo
|
||
enddo
|
||
|
||
! Diagonal of the hessian
|
||
H = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
|
||
enddo
|
||
|
||
! Deallocation
|
||
deallocate(beta)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in hessian_FB:', t3
|
||
|
||
print*,'---End hessian_FB---'
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
*** Hessian (OMP)
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine hessian_FB_omp(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the diagonal hessian for the Foster-Boys localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: H(tmp_n)
|
||
double precision, allocatable :: beta(:,:)
|
||
integer :: i,j,tmp_k,tmp_i,tmp_j
|
||
double precision :: max_elem, t1,t2,t3
|
||
|
||
print*,''
|
||
print*,'---hessian_FB_omp---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(beta(tmp_list_size,tmp_list_size))
|
||
|
||
! Initialization omp
|
||
call omp_set_max_active_levels(1)
|
||
|
||
!$OMP PARALLEL &
|
||
!$OMP PRIVATE(i,j,tmp_i,tmp_j,tmp_k) &
|
||
!$OMP SHARED(tmp_n,tmp_list_size,beta,H,mo_dipole_x,mo_dipole_y,mo_dipole_z,tmp_list) &
|
||
!$OMP DEFAULT(NONE)
|
||
|
||
|
||
! Calculation
|
||
!$OMP DO
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 - 4d0 * mo_dipole_x(i,j)**2 &
|
||
+(mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 - 4d0 * mo_dipole_y(i,j)**2 &
|
||
+(mo_dipole_z(i,i) - mo_dipole_z(j,j))**2 - 4d0 * mo_dipole_z(i,j)**2
|
||
enddo
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
! Initialization
|
||
!$OMP DO
|
||
do i = 1, tmp_n
|
||
H(i) = 0d0
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
! Diagonalm of the hessian
|
||
!$OMP DO
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
|
||
enddo
|
||
!$OMP END DO
|
||
|
||
!$OMP END PARALLEL
|
||
|
||
call omp_set_max_active_levels(4)
|
||
|
||
! Deallocation
|
||
deallocate(beta)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in hessian_FB_omp:', t3
|
||
|
||
print*,'---End hessian_FB_omp---'
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
** Pipek-Mezey
|
||
*** Gradient v1
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute gradient for the Pipek-Mezey localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||
double precision, allocatable :: m_grad(:,:), tmp_int(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
|
||
|
||
! Allocation
|
||
allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size))
|
||
|
||
! Initialization
|
||
m_grad = 0d0
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
tmp_int = 0d0 ! Initialization for each nuclei
|
||
|
||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do rho = 1, ao_num ! loop over all the AOs
|
||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||
|
||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
enddo
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
! Gradient
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
! 2D -> 1D
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||
enddo
|
||
|
||
! Maximum element in the gradient
|
||
max_elem = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||
max_elem = ABS(v_grad(tmp_k))
|
||
endif
|
||
enddo
|
||
|
||
! Norm of the gradient
|
||
norm_grad = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||
enddo
|
||
norm_grad = dsqrt(norm_grad)
|
||
|
||
print*, 'Maximal element in the gradient:', max_elem
|
||
print*, 'Norm of the gradient:', norm_grad
|
||
|
||
! Deallocation
|
||
deallocate(m_grad,tmp_int)
|
||
|
||
end subroutine grad_pipek
|
||
#+END_SRC
|
||
|
||
*** Gradient
|
||
|
||
The gradient is
|
||
|
||
\begin{align*}
|
||
\left. \frac{\partial \mathcal{P} (\theta)}{\partial \theta} \right|_{\theta=0}= \gamma^{PM}
|
||
\end{align*}
|
||
with
|
||
\begin{align*}
|
||
\gamma_{st}^{PM} = \sum_{A=1}^N <s|P_A|t> \left[ <s| P_A |s> - <t|P_A|t> \right]
|
||
\end{align*}
|
||
|
||
\begin{align*}
|
||
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
|
||
\end{align*}
|
||
$\sum_{\rho}$ -> sum over all the AOs
|
||
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
|
||
$c^t$ -> expansion coefficient of orbital |t>
|
||
|
||
Input:
|
||
| tmp_n | integer | Number of parameters in the MO subspace |
|
||
| tmp_list_size | integer | Number of MOs in the mo_class we want to localize |
|
||
| tmp_list(tmp_list_size) | integer | MOs in the mo_class |
|
||
|
||
Output:
|
||
| v_grad(tmp_n) | double precision | Gradient in the subspace |
|
||
| max_elem | double precision | Maximal element in the gradient |
|
||
| norm_grad | double precision | Norm of the gradient |
|
||
|
||
Internal:
|
||
| m_grad(tmp_list_size,tmp_list_size) | double precision | Gradient in a 2D array |
|
||
| tmp_int(tmp_list_size,tmp_list_size) | | Temporary array to store the integrals |
|
||
| tmp_accu(tmp_list_size,tmp_list_size) | | Temporary array to store a matrix |
|
||
| | | product and compute tmp_int |
|
||
| CS(tmp_list_size,ao_num) | | Array to store the result of mo_coef * ao_overlap |
|
||
| tmp_mo_coef(ao_num,tmp_list_size) | | Array to store just the useful MO coefficients |
|
||
| | | depending of the mo_class |
|
||
| tmp_mo_coef2(nucl_n_aos(a),tmp_list_size) | | Array to store just the useful MO coefficients |
|
||
| | | depending of the nuclei |
|
||
| tmp_CS(tmp_list_size,nucl_n_aos(a)) | | Array to store just the useful mo_coef * ao_overlap |
|
||
| | | values depending of the nuclei |
|
||
| a | | index to loop over the nuclei |
|
||
| b | | index to loop over the AOs which belongs to the nuclei a |
|
||
| mu | | index to refer to an AO which belongs to the nuclei a |
|
||
| rho | | index to loop over all the AOs |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute gradient for the Pipek-Mezey localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||
double precision, allocatable :: m_grad(:,:), tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
|
||
double precision :: t1,t2,t3
|
||
|
||
print*,''
|
||
print*,'---gradient_PM---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
|
||
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
|
||
|
||
|
||
! submatrix of the mo_coef
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do j = 1, ao_num
|
||
|
||
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
|
||
|
||
m_grad = 0d0
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
tmp_int = 0d0
|
||
|
||
!do tmp_j = 1, tmp_list_size
|
||
! do tmp_i = 1, tmp_list_size
|
||
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
! mu = nucl_aos(a,b)
|
||
|
||
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
|
||
|
||
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
! enddo
|
||
! enddo
|
||
!enddo
|
||
|
||
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
|
||
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
deallocate(tmp_mo_coef2,tmp_CS)
|
||
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
! 2D -> 1D
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||
enddo
|
||
|
||
! Maximum element in the gradient
|
||
max_elem = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||
max_elem = ABS(v_grad(tmp_k))
|
||
endif
|
||
enddo
|
||
|
||
! Norm of the gradient
|
||
norm_grad = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||
enddo
|
||
norm_grad = dsqrt(norm_grad)
|
||
|
||
print*, 'Maximal element in the gradient:', max_elem
|
||
print*, 'Norm of the gradient:', norm_grad
|
||
|
||
! Deallocation
|
||
deallocate(m_grad,tmp_int,CS,tmp_mo_coef)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in gradient_PM:', t3
|
||
|
||
print*,'---End gradient_PM---'
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
*** Hessian v1
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine hess_pipek(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute diagonal hessian for the Pipek-Mezey localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: H(tmp_n)
|
||
double precision, allocatable :: beta(:,:),tmp_int(:,:)
|
||
integer :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
|
||
double precision :: max_elem
|
||
|
||
! Allocation
|
||
allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size))
|
||
|
||
beta = 0d0
|
||
|
||
do a = 1, nucl_num
|
||
tmp_int = 0d0
|
||
|
||
do tmp_j = 1, tmp_list_size
|
||
j = tmp_list(tmp_j)
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do rho = 1, ao_num
|
||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
enddo
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
! Calculation
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) + (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2
|
||
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
H = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
|
||
enddo
|
||
|
||
! Deallocation
|
||
deallocate(beta,tmp_int)
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
*** Hessian
|
||
|
||
The hessian is
|
||
\begin{align*}
|
||
\left. \frac{\partial^2 \mathcal{P} (\theta)}{\partial \theta^2}\right|_{\theta=0} = 4 \beta^{PM}
|
||
\end{align*}
|
||
\begin{align*}
|
||
\beta_{st}^{PM} = \sum_{A=1}^N \left( <s|P_A|t>^2 - \frac{1}{4} \left[<s|P_A|s> - <t|P_A|t> \right]^2 \right)
|
||
\end{align*}
|
||
|
||
with
|
||
\begin{align*}
|
||
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
|
||
\end{align*}
|
||
$\sum_{\rho}$ -> sum over all the AOs
|
||
$\sum_{\mu \in A}$ -> sum over the AOs which belongs to atom A
|
||
$c^t$ -> expansion coefficient of orbital |t>
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute diagonal hessian for the Pipek-Mezey localization
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: H(tmp_n)
|
||
double precision, allocatable :: beta(:,:),tmp_int(:,:),CS(:,:),tmp_mo_coef(:,:),tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
|
||
integer :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
|
||
double precision :: max_elem, t1,t2,t3
|
||
|
||
print*,''
|
||
print*,'---hessian_PM---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size),tmp_accu(tmp_list_size,tmp_list_size))
|
||
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
|
||
|
||
beta = 0d0
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do j = 1, ao_num
|
||
|
||
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
tmp_int = 0d0
|
||
|
||
!do tmp_j = 1, tmp_list_size
|
||
! do tmp_i = 1, tmp_list_size
|
||
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
! mu = nucl_aos(a,b)
|
||
|
||
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
|
||
|
||
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
! enddo
|
||
! enddo
|
||
!enddo
|
||
|
||
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
|
||
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
deallocate(tmp_mo_coef2,tmp_CS)
|
||
|
||
! Calculation
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
beta(tmp_i,tmp_j) = beta(tmp_i, tmp_j) + (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))**2 - 4d0 * tmp_int(tmp_i,tmp_j)**2
|
||
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
H = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||
H(tmp_k) = 4d0 * beta(tmp_i, tmp_j)
|
||
enddo
|
||
|
||
! Deallocation
|
||
deallocate(beta,tmp_int)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in hessian_PM:', t3
|
||
|
||
print*,'---End hessian_PM---'
|
||
|
||
end
|
||
|
||
#+END_SRC
|
||
|
||
** Criterion
|
||
*** Criterion PM (old)
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine compute_crit_pipek(criterion)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the Pipek-Mezey localization criterion
|
||
END_DOC
|
||
|
||
double precision, intent(out) :: criterion
|
||
double precision, allocatable :: tmp_int(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
|
||
|
||
! Allocation
|
||
allocate(tmp_int(mo_num, mo_num))
|
||
|
||
criterion = 0d0
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
tmp_int = 0d0
|
||
|
||
do i = 1, mo_num
|
||
do rho = 1, ao_num ! loop over all the AOs
|
||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_int(i,i) = tmp_int(i,i) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,i) &
|
||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,i))
|
||
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
do i = 1, mo_num
|
||
criterion = criterion + tmp_int(i,i)**2
|
||
enddo
|
||
|
||
enddo
|
||
|
||
criterion = - criterion
|
||
|
||
deallocate(tmp_int)
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
*** Criterion PM
|
||
|
||
The criterion is computed as
|
||
\begin{align*}
|
||
\mathcal{P} = \sum_{i=1}^n \sum_{A=1}^N \left[ <i|P_A|i> \right]^2
|
||
\end{align*}
|
||
with
|
||
\begin{align*}
|
||
<s|P_A|t> = \frac{1}{2} \sum_{\rho} \sum_{\mu \in A} \left[ c_{\rho}^{s*} S_{\rho \nu} c_{\mu}^{t} +c_{\mu}^{s*} S_{\mu \rho} c_{\rho}^t \right]
|
||
\end{align*}
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine criterion_PM(tmp_list_size,tmp_list,criterion)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the Pipek-Mezey localization criterion
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: criterion
|
||
double precision, allocatable :: tmp_int(:,:),CS(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
|
||
|
||
print*,''
|
||
print*,'---criterion_PM---'
|
||
|
||
! Allocation
|
||
allocate(tmp_int(tmp_list_size, tmp_list_size),CS(mo_num,ao_num))
|
||
|
||
! Initialization
|
||
criterion = 0d0
|
||
|
||
call dgemm('T','N',mo_num,ao_num,ao_num,1d0,mo_coef,size(mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
tmp_int = 0d0
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_int(tmp_i,tmp_i) = tmp_int(tmp_i,tmp_i) + 0.5d0 * (CS(i,mu) * mo_coef(mu,i) + mo_coef(mu,i) * CS(i,mu))
|
||
|
||
! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
!+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
criterion = criterion + tmp_int(tmp_i,tmp_i)**2
|
||
enddo
|
||
|
||
enddo
|
||
|
||
criterion = - criterion
|
||
|
||
deallocate(tmp_int,CS)
|
||
|
||
print*,'---End criterion_PM---'
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
*** Criterion PM v3
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the Pipek-Mezey localization criterion
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: criterion
|
||
double precision, allocatable :: tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
|
||
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho,nu,c
|
||
double precision :: t1,t2,t3
|
||
|
||
print*,''
|
||
print*,'---criterion_PM_v3---'
|
||
|
||
call wall_time(t1)
|
||
|
||
! Allocation
|
||
allocate(tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
|
||
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
|
||
|
||
criterion = 0d0
|
||
|
||
! submatrix of the mo_coef
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
do j = 1, ao_num
|
||
|
||
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
! ao_overlap(ao_num,ao_num)
|
||
! mo_coef(ao_num,mo_num)
|
||
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
|
||
do j = 1, tmp_list_size
|
||
do i = 1, tmp_list_size
|
||
tmp_int(i,j) = 0d0
|
||
enddo
|
||
enddo
|
||
|
||
!do tmp_j = 1, tmp_list_size
|
||
! do tmp_i = 1, tmp_list_size
|
||
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
! mu = nucl_aos(a,b)
|
||
|
||
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
|
||
|
||
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
! enddo
|
||
! enddo
|
||
!enddo
|
||
|
||
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
|
||
|
||
do tmp_i = 1, tmp_list_size
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
|
||
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
do b = 1, nucl_n_aos(a)
|
||
mu = nucl_aos(a,b)
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_CS(tmp_i,b) = CS(tmp_i,mu)
|
||
|
||
enddo
|
||
enddo
|
||
|
||
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
|
||
|
||
! Integrals
|
||
do tmp_j = 1, tmp_list_size
|
||
do tmp_i = 1, tmp_list_size
|
||
|
||
tmp_int(tmp_i,tmp_j) = 0.5d0 * (tmp_accu(tmp_i,tmp_j) + tmp_accu(tmp_j,tmp_i))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
deallocate(tmp_mo_coef2,tmp_CS)
|
||
|
||
! Criterion
|
||
do tmp_i = 1, tmp_list_size
|
||
criterion = criterion + tmp_int(tmp_i,tmp_i)**2
|
||
enddo
|
||
|
||
enddo
|
||
|
||
criterion = - criterion
|
||
|
||
deallocate(tmp_int,CS,tmp_accu,tmp_mo_coef)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2 - t1
|
||
print*,'Time in criterion_PM_v3:', t3
|
||
|
||
print*,'---End criterion_PM_v3---'
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
*** Criterion FB (old)
|
||
|
||
The criterion is just computed as
|
||
|
||
\begin{align*}
|
||
C = - \sum_i^{mo_{num}} (<i|x|i>^2 + <i|y|i>^2 + <i|z|i>^2)
|
||
\end{align*}
|
||
|
||
The minus sign is here in order to minimize this criterion
|
||
|
||
Output:
|
||
| criterion | double precision | criterion for the Foster-Boys localization |
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine criterion_FB_old(criterion)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the Foster-Boys localization criterion
|
||
END_DOC
|
||
|
||
double precision, intent(out) :: criterion
|
||
integer :: i
|
||
|
||
! Criterion (= \sum_i <i|r|i>^2 )
|
||
criterion = 0d0
|
||
do i = 1, mo_num
|
||
criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
|
||
enddo
|
||
criterion = - criterion
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
*** Criterion FB
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the Foster-Boys localization criterion
|
||
END_DOC
|
||
|
||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(out) :: criterion
|
||
integer :: i, tmp_i
|
||
|
||
! Criterion (= - \sum_i <i|r|i>^2 )
|
||
criterion = 0d0
|
||
do tmp_i = 1, tmp_list_size
|
||
i = tmp_list(tmp_i)
|
||
criterion = criterion + mo_dipole_x(i,i)**2 + mo_dipole_y(i,i)**2 + mo_dipole_z(i,i)**2
|
||
enddo
|
||
criterion = - criterion
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
** Theta
|
||
|
||
In:
|
||
| n | integer | number of MOs in the considered MO class |
|
||
| l | integer | list of MOs of the considered class |
|
||
|
||
Out:
|
||
| m_x(n,n) | double precision | Matrix containing the rotation angle between all the different |
|
||
| | | pairs of MOs to apply the rotations (need a minus sign) |
|
||
| max_elem | double precision | Maximal angle in absolute value |
|
||
|
||
$$\cos(4 \theta) = \frac{-A{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
|
||
$$\sin(4 \theta) = \frac{B{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
|
||
$$\tan(4 \theta) = \frac{\sin(4 \theta)}{\cos(4 \theta)}$$
|
||
where $\theta$ is in fact $\theta_{ij}$
|
||
|
||
For Foster-Boys localization:
|
||
$$A_{ij} = <i|r|j>^2 - \frac{1}{4} (<i|r|i> - <j|r|j>)^2$$
|
||
$$B_{ij} = <i|r|j> (<i|r|i> - <j|r|j>)$$
|
||
|
||
|
||
For Pipek-Mezey localization:
|
||
$$A_{ij} = \sum_A <i|P_A|j>^2 - \frac{1}{4} (<i|P_A|i> - <j|P_A|j>)^2$$
|
||
$$B_{ij} = \sum_A <i|P_A|j> (<i|P_A|i> - <j|P_A|j>)$$
|
||
with
|
||
$$<i|P_A|j> = \frac{1}{2} \sum_\rho \sum_{\mu \in A} ( c_\rho^{i*} S_{\rho
|
||
\mu} c_\mu^j + c_\mu^{i*} S_{\mu \rho} c_\rho^j)$$
|
||
$i,j$ MOs
|
||
$\mu, \rho$ AOs
|
||
$A$ nucleus
|
||
$S$ overlap matrix
|
||
$c$ MO coefficient
|
||
$r$ position operator
|
||
|
||
#+begin_src f90 :tangle localization_sub.irp.f
|
||
subroutine theta_FB(l, n, m_x, max_elem)
|
||
|
||
include 'pi.h'
|
||
|
||
BEGIN_DOC
|
||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||
! Warning: you must give - the angles to build the rotation matrix...
|
||
END_DOC
|
||
|
||
implicit none
|
||
|
||
integer, intent(in) :: n, l(n)
|
||
double precision, intent(out) :: m_x(n,n), max_elem
|
||
|
||
integer :: i,j, tmp_i, tmp_j
|
||
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
|
||
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
|
||
integer :: idx_i,idx_j
|
||
|
||
allocate(cos4theta(n, n), sin4theta(n, n))
|
||
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
|
||
|
||
do tmp_j = 1, n
|
||
j = l(tmp_j)
|
||
do tmp_i = 1, n
|
||
i = l(tmp_i)
|
||
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
|
||
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
|
||
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
|
||
enddo
|
||
A(j,j) = 0d0
|
||
enddo
|
||
|
||
do tmp_j = 1, n
|
||
j = l(tmp_j)
|
||
do tmp_i = 1, n
|
||
i = l(tmp_i)
|
||
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
|
||
enddo
|
||
enddo
|
||
|
||
!do tmp_j = 1, n
|
||
! j = l(tmp_j)
|
||
! do tmp_i = 1, n
|
||
! i = l(tmp_i)
|
||
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
|
||
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
|
||
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
|
||
! enddo
|
||
!enddo
|
||
|
||
!do tmp_j = 1, n
|
||
! j = l(tmp_j)
|
||
! do tmp_i = 1, n
|
||
! i = l(tmp_i)
|
||
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
|
||
! enddo
|
||
!enddo
|
||
|
||
!
|
||
!do j = 1, n
|
||
! do i = 1, n
|
||
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||
! enddo
|
||
!enddo
|
||
|
||
!do j = 1, n
|
||
! do i = 1, n
|
||
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||
! enddo
|
||
!enddo
|
||
|
||
! Theta
|
||
do j = 1, n
|
||
do i = 1, n
|
||
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
|
||
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
|
||
enddo
|
||
enddo
|
||
|
||
! Enforce a perfect antisymmetry
|
||
do j = 1, n-1
|
||
do i = j+1, n
|
||
m_x(j,i) = - m_x(i,j)
|
||
enddo
|
||
enddo
|
||
do i = 1, n
|
||
m_x(i,i) = 0d0
|
||
enddo
|
||
|
||
! Max
|
||
max_elem = 0d0
|
||
do j = 1, n-1
|
||
do i = j+1, n
|
||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||
max_elem = m_x(i,j)
|
||
!idx_i = i
|
||
!idx_j = j
|
||
endif
|
||
enddo
|
||
enddo
|
||
|
||
! Debug
|
||
!print*,''
|
||
!print*,'sin/B'
|
||
!do i = 1, n
|
||
! write(*,'(100F10.4)') sin4theta(i,:)
|
||
! !B(i,:)
|
||
!enddo
|
||
!print*,'cos/A'
|
||
!do i = 1, n
|
||
! write(*,'(100F10.4)') cos4theta(i,:)
|
||
! !A(i,:)
|
||
!enddo
|
||
!print*,'X'
|
||
!!m_x = 0d0
|
||
!!m_x(idx_i,idx_j) = max_elem
|
||
!!m_x(idx_j,idx_i) = -max_elem
|
||
!do i = 1, n
|
||
! write(*,'(100F10.4)') m_x(i,:)
|
||
!enddo
|
||
!print*,idx_i,idx_j,max_elem
|
||
|
||
max_elem = dabs(max_elem)
|
||
|
||
deallocate(cos4theta, sin4theta)
|
||
deallocate(A,B,beta,gamma)
|
||
|
||
end
|
||
#+end_src
|
||
|
||
#+begin_src f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine theta_PM(l, n, m_x, max_elem)
|
||
|
||
include 'pi.h'
|
||
|
||
BEGIN_DOC
|
||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||
! Warning: you must give - the angles to build the rotation matrix...
|
||
END_DOC
|
||
|
||
implicit none
|
||
|
||
integer, intent(in) :: n, l(n)
|
||
double precision, intent(out) :: m_x(n,n), max_elem
|
||
|
||
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
|
||
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
|
||
|
||
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
|
||
|
||
do a = 1, nucl_num ! loop over the nuclei
|
||
Pa = 0d0 ! Initialization for each nuclei
|
||
|
||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||
do tmp_j = 1, n
|
||
j = l(tmp_j)
|
||
do tmp_i = 1, n
|
||
i = l(tmp_i)
|
||
do rho = 1, ao_num ! loop over all the AOs
|
||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||
|
||
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||
|
||
enddo
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
! A
|
||
do j = 1, n
|
||
do i = 1, n
|
||
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
|
||
enddo
|
||
enddo
|
||
|
||
! B
|
||
do j = 1, n
|
||
do i = 1, n
|
||
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
|
||
enddo
|
||
enddo
|
||
|
||
enddo
|
||
|
||
! Theta
|
||
do j = 1, n
|
||
do i = 1, n
|
||
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
|
||
enddo
|
||
enddo
|
||
|
||
! Enforce a perfect antisymmetry
|
||
do j = 1, n-1
|
||
do i = j+1, n
|
||
m_x(j,i) = - m_x(i,j)
|
||
enddo
|
||
enddo
|
||
do i = 1, n
|
||
m_x(i,i) = 0d0
|
||
enddo
|
||
|
||
! Max
|
||
max_elem = 0d0
|
||
do j = 1, n-1
|
||
do i = j+1, n
|
||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||
max_elem = m_x(i,j)
|
||
idx_i = i
|
||
idx_j = j
|
||
endif
|
||
enddo
|
||
enddo
|
||
|
||
! Debug
|
||
!do i = 1, n
|
||
! write(*,'(100F10.4)') m_x(i,:)
|
||
!enddo
|
||
!print*,'Max',idx_i,idx_j,max_elem
|
||
|
||
max_elem = dabs(max_elem)
|
||
|
||
deallocate(Aij,Bij,Pa)
|
||
|
||
end
|
||
#+end_src
|
||
|
||
** Spatial extent
|
||
|
||
The spatial extent of an orbital $i$ is computed as
|
||
\begin{align*}
|
||
\sum_{\lambda=x,y,z}\sqrt{<i|\lambda^2|i> - <i|\lambda|i>^2}
|
||
\end{align*}
|
||
|
||
From that we can also compute the average and the standard deviation
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine compute_spatial_extent(spatial_extent)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the spatial extent of the MOs
|
||
END_DOC
|
||
|
||
double precision, intent(out) :: spatial_extent(mo_num)
|
||
double precision :: average_core, average_act, average_inact, average_virt
|
||
double precision :: std_var_core, std_var_act, std_var_inact, std_var_virt
|
||
integer :: i,j,k,l
|
||
|
||
spatial_extent = 0d0
|
||
|
||
do i = 1, mo_num
|
||
spatial_extent(i) = mo_spread_x(i,i) - mo_dipole_x(i,i)**2
|
||
enddo
|
||
do i = 1, mo_num
|
||
spatial_extent(i) = spatial_extent(i) + mo_spread_y(i,i) - mo_dipole_y(i,i)**2
|
||
enddo
|
||
do i = 1, mo_num
|
||
spatial_extent(i) = spatial_extent(i) + mo_spread_z(i,i) - mo_dipole_z(i,i)**2
|
||
enddo
|
||
|
||
do i = 1, mo_num
|
||
spatial_extent(i) = dsqrt(spatial_extent(i))
|
||
enddo
|
||
|
||
average_core = 0d0
|
||
std_var_core = 0d0
|
||
if (dim_list_core_orb >= 2) then
|
||
call compute_average_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core)
|
||
call compute_std_var_sp_ext(spatial_extent, list_core, dim_list_core_orb, average_core, std_var_core)
|
||
endif
|
||
|
||
average_act = 0d0
|
||
std_var_act = 0d0
|
||
if (dim_list_act_orb >= 2) then
|
||
call compute_average_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act)
|
||
call compute_std_var_sp_ext(spatial_extent, list_act, dim_list_act_orb, average_act, std_var_act)
|
||
endif
|
||
|
||
average_inact = 0d0
|
||
std_var_inact = 0d0
|
||
if (dim_list_inact_orb >= 2) then
|
||
call compute_average_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact)
|
||
call compute_std_var_sp_ext(spatial_extent, list_inact, dim_list_inact_orb, average_inact, std_var_inact)
|
||
endif
|
||
|
||
average_virt = 0d0
|
||
std_var_virt = 0d0
|
||
if (dim_list_virt_orb >= 2) then
|
||
call compute_average_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt)
|
||
call compute_std_var_sp_ext(spatial_extent, list_virt, dim_list_virt_orb, average_virt, std_var_virt)
|
||
endif
|
||
|
||
print*,''
|
||
print*,'============================='
|
||
print*,' Spatial extent of the MOs'
|
||
print*,'============================='
|
||
print*,''
|
||
|
||
print*, 'elec_num:', elec_num
|
||
print*, 'elec_alpha_num:', elec_alpha_num
|
||
print*, 'elec_beta_num:', elec_beta_num
|
||
print*, 'core:', dim_list_core_orb
|
||
print*, 'act:', dim_list_act_orb
|
||
print*, 'inact:', dim_list_inact_orb
|
||
print*, 'virt:', dim_list_virt_orb
|
||
print*, 'mo_num:', mo_num
|
||
print*,''
|
||
|
||
print*,'-- Core MOs --'
|
||
print*,'Average:', average_core
|
||
print*,'Std var:', std_var_core
|
||
print*,''
|
||
|
||
print*,'-- Active MOs --'
|
||
print*,'Average:', average_act
|
||
print*,'Std var:', std_var_act
|
||
print*,''
|
||
|
||
print*,'-- Inactive MOs --'
|
||
print*,'Average:', average_inact
|
||
print*,'Std var:', std_var_inact
|
||
print*,''
|
||
|
||
print*,'-- Virtual MOs --'
|
||
print*,'Average:', average_virt
|
||
print*,'Std var:', std_var_virt
|
||
print*,''
|
||
|
||
print*,'Spatial extent:'
|
||
do i = 1, mo_num
|
||
print*, i, spatial_extent(i)
|
||
enddo
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine compute_average_sp_ext(spatial_extent, list, list_size, average)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the average spatial extent of the MOs
|
||
END_DOC
|
||
|
||
integer, intent(in) :: list_size, list(list_size)
|
||
double precision, intent(in) :: spatial_extent(mo_num)
|
||
double precision, intent(out) :: average
|
||
integer :: i, tmp_i
|
||
|
||
average = 0d0
|
||
do tmp_i = 1, list_size
|
||
i = list(tmp_i)
|
||
average = average + spatial_extent(i)
|
||
enddo
|
||
|
||
average = average / DBLE(list_size)
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine compute_std_var_sp_ext(spatial_extent, list, list_size, average, std_var)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Compute the standard deviation of the spatial extent of the MOs
|
||
END_DOC
|
||
|
||
integer, intent(in) :: list_size, list(list_size)
|
||
double precision, intent(in) :: spatial_extent(mo_num)
|
||
double precision, intent(in) :: average
|
||
double precision, intent(out) :: std_var
|
||
integer :: i, tmp_i
|
||
|
||
std_var = 0d0
|
||
|
||
do tmp_i = 1, list_size
|
||
i = list(tmp_i)
|
||
std_var = std_var + (spatial_extent(i) - average)**2
|
||
enddo
|
||
|
||
std_var = dsqrt(1d0/DBLE(list_size) * std_var)
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
** Utils
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine apply_pre_rotation()
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Apply a rotation between the MOs
|
||
END_DOC
|
||
|
||
double precision, allocatable :: pre_rot(:,:), prev_mos(:,:), R(:,:)
|
||
double precision :: t1,t2,t3
|
||
integer :: i,j,tmp_i,tmp_j
|
||
integer :: info
|
||
logical :: enforce_step_cancellation
|
||
|
||
print*,'---apply_pre_rotation---'
|
||
call wall_time(t1)
|
||
|
||
allocate(pre_rot(mo_num,mo_num), prev_mos(ao_num,mo_num), R(mo_num,mo_num))
|
||
|
||
! Initialization of the matrix
|
||
pre_rot = 0d0
|
||
|
||
if (kick_in_mos) then
|
||
! Pre rotation for core MOs
|
||
if (dim_list_core_orb >= 2) then
|
||
do tmp_j = 1, dim_list_core_orb
|
||
j = list_core(tmp_j)
|
||
do tmp_i = 1, dim_list_core_orb
|
||
i = list_core(tmp_i)
|
||
if (i > j) then
|
||
pre_rot(i,j) = angle_pre_rot
|
||
elseif (i < j) then
|
||
pre_rot(i,j) = - angle_pre_rot
|
||
else
|
||
pre_rot(i,j) = 0d0
|
||
endif
|
||
enddo
|
||
enddo
|
||
endif
|
||
|
||
! Pre rotation for active MOs
|
||
if (dim_list_act_orb >= 2) then
|
||
do tmp_j = 1, dim_list_act_orb
|
||
j = list_act(tmp_j)
|
||
do tmp_i = 1, dim_list_act_orb
|
||
i = list_act(tmp_i)
|
||
if (i > j) then
|
||
pre_rot(i,j) = angle_pre_rot
|
||
elseif (i < j) then
|
||
pre_rot(i,j) = - angle_pre_rot
|
||
else
|
||
pre_rot(i,j) = 0d0
|
||
endif
|
||
enddo
|
||
enddo
|
||
endif
|
||
|
||
! Pre rotation for inactive MOs
|
||
if (dim_list_inact_orb >= 2) then
|
||
do tmp_j = 1, dim_list_inact_orb
|
||
j = list_inact(tmp_j)
|
||
do tmp_i = 1, dim_list_inact_orb
|
||
i = list_inact(tmp_i)
|
||
if (i > j) then
|
||
pre_rot(i,j) = angle_pre_rot
|
||
elseif (i < j) then
|
||
pre_rot(i,j) = - angle_pre_rot
|
||
else
|
||
pre_rot(i,j) = 0d0
|
||
endif
|
||
enddo
|
||
enddo
|
||
endif
|
||
|
||
! Pre rotation for virtual MOs
|
||
if (dim_list_virt_orb >= 2) then
|
||
do tmp_j = 1, dim_list_virt_orb
|
||
j = list_virt(tmp_j)
|
||
do tmp_i = 1, dim_list_virt_orb
|
||
i = list_virt(tmp_i)
|
||
if (i > j) then
|
||
pre_rot(i,j) = angle_pre_rot
|
||
elseif (i < j) then
|
||
pre_rot(i,j) = - angle_pre_rot
|
||
else
|
||
pre_rot(i,j) = 0d0
|
||
endif
|
||
enddo
|
||
enddo
|
||
endif
|
||
|
||
! Nothing for deleted ones
|
||
|
||
! Compute pre rotation matrix from pre_rot
|
||
call rotation_matrix(pre_rot,mo_num,R,mo_num,mo_num,info,enforce_step_cancellation)
|
||
|
||
if (enforce_step_cancellation) then
|
||
print*, 'Cancellation of the pre rotation, too big error in the rotation matrix'
|
||
print*, 'Reduce the angle for the pre rotation, abort'
|
||
call abort
|
||
endif
|
||
|
||
! New Mos (we don't car eabout the previous MOs prev_mos)
|
||
call apply_mo_rotation(R,prev_mos)
|
||
|
||
! Update the things related to mo_coef
|
||
TOUCH mo_coef
|
||
call save_mos
|
||
endif
|
||
|
||
deallocate(pre_rot, prev_mos, R)
|
||
|
||
call wall_time(t2)
|
||
t3 = t2-t1
|
||
print*,'Time in apply_pre_rotation:', t3
|
||
print*,'---End apply_pre_rotation---'
|
||
|
||
end
|
||
#+END_SRC
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine x_tmp_orb_loc_v2(tmp_n, tmp_list_size, tmp_list, v_grad, H,tmp_x, tmp_m_x)
|
||
|
||
implicit none
|
||
|
||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||
double precision, intent(in) :: v_grad(tmp_n)
|
||
double precision, intent(in) :: H(tmp_n, tmp_n)
|
||
double precision, intent(out) :: tmp_m_x(tmp_list_size, tmp_list_size), tmp_x(tmp_list_size)
|
||
!double precision, allocatable :: x(:)
|
||
double precision :: lambda , accu, max_elem
|
||
integer :: i,j,tmp_i,tmp_j,tmp_k
|
||
|
||
! Allocation
|
||
!allocate(x(tmp_n))
|
||
|
||
! Level shifted hessian
|
||
lambda = 0d0
|
||
do tmp_k = 1, tmp_n
|
||
if (H(tmp_k,tmp_k) < lambda) then
|
||
lambda = H(tmp_k,tmp_k)
|
||
endif
|
||
enddo
|
||
|
||
! min element in the hessian
|
||
if (lambda < 0d0) then
|
||
lambda = -lambda + 1d-6
|
||
endif
|
||
|
||
print*, 'lambda', lambda
|
||
|
||
! Good
|
||
do tmp_k = 1, tmp_n
|
||
if (ABS(H(tmp_k,tmp_k)) > 1d-6) then
|
||
tmp_x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * v_grad(tmp_k)!(-v_grad(tmp_k))
|
||
!x(tmp_k) = - 1d0/(ABS(H(tmp_k,tmp_k))+lambda) * (-v_grad(tmp_k))
|
||
endif
|
||
enddo
|
||
|
||
! 1D tmp -> 2D tmp
|
||
tmp_m_x = 0d0
|
||
do tmp_j = 1, tmp_list_size - 1
|
||
do tmp_i = tmp_j + 1, tmp_list_size
|
||
call mat_to_vec_index(tmp_i,tmp_j,tmp_k)
|
||
tmp_m_x(tmp_i, tmp_j) = tmp_x(tmp_k)!x(tmp_k)
|
||
enddo
|
||
enddo
|
||
|
||
! Antisym
|
||
do tmp_i = 1, tmp_list_size - 1
|
||
do tmp_j = tmp_i + 1, tmp_list_size
|
||
tmp_m_x(tmp_i,tmp_j) = - tmp_m_x(tmp_j,tmp_i)
|
||
enddo
|
||
enddo
|
||
|
||
! Deallocation
|
||
!deallocate(x)
|
||
|
||
end subroutine
|
||
#+END_SRC
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine ao_to_mo_no_sym(A_ao,LDA_ao,A_mo,LDA_mo)
|
||
implicit none
|
||
BEGIN_DOC
|
||
! Transform A from the |AO| basis to the |MO| basis
|
||
!
|
||
! $C^\dagger.A_{ao}.C$
|
||
END_DOC
|
||
integer, intent(in) :: LDA_ao,LDA_mo
|
||
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
|
||
double precision, intent(out) :: A_mo(LDA_mo,mo_num)
|
||
double precision, allocatable :: T(:,:)
|
||
|
||
allocate ( T(ao_num,mo_num) )
|
||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||
|
||
call dgemm('N','N', ao_num, mo_num, ao_num, &
|
||
1.d0, A_ao,LDA_ao, &
|
||
mo_coef, size(mo_coef,1), &
|
||
0.d0, T, size(T,1))
|
||
|
||
call dgemm('T','N', mo_num, mo_num, ao_num, &
|
||
1.d0, mo_coef,size(mo_coef,1), &
|
||
T, ao_num, &
|
||
0.d0, A_mo, size(A_mo,1))
|
||
|
||
deallocate(T)
|
||
end
|
||
#+END_SRC
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
subroutine run_sort_by_fock_energies()
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! Saves the current MOs ordered by diagonal element of the Fock operator.
|
||
END_DOC
|
||
|
||
integer :: i,j,k,l,tmp_i,tmp_k,tmp_list_size
|
||
integer, allocatable :: iorder(:), tmp_list(:)
|
||
double precision, allocatable :: fock_energies_tmp(:), tmp_mo_coef(:,:)
|
||
|
||
! Test
|
||
do l = 1, 4
|
||
if (l==1) then ! core
|
||
tmp_list_size = dim_list_core_orb
|
||
elseif (l==2) then ! act
|
||
tmp_list_size = dim_list_act_orb
|
||
elseif (l==3) then ! inact
|
||
tmp_list_size = dim_list_inact_orb
|
||
else ! virt
|
||
tmp_list_size = dim_list_virt_orb
|
||
endif
|
||
|
||
if (tmp_list_size >= 2) then
|
||
! Allocation tmp array
|
||
allocate(tmp_list(tmp_list_size))
|
||
|
||
! To give the list of MOs in a mo_class
|
||
if (l==1) then ! core
|
||
tmp_list = list_core
|
||
elseif (l==2) then
|
||
tmp_list = list_act
|
||
elseif (l==3) then
|
||
tmp_list = list_inact
|
||
else
|
||
tmp_list = list_virt
|
||
endif
|
||
print*,'MO class: ',trim(mo_class(tmp_list(1)))
|
||
|
||
allocate(iorder(tmp_list_size), fock_energies_tmp(tmp_list_size), tmp_mo_coef(ao_num,tmp_list_size))
|
||
!print*,'MOs before sorting them by f_p^p energies:'
|
||
do i = 1, tmp_list_size
|
||
tmp_i = tmp_list(i)
|
||
fock_energies_tmp(i) = Fock_matrix_diag_mo(tmp_i)
|
||
iorder(i) = i
|
||
!print*, tmp_i, fock_energies_tmp(i)
|
||
enddo
|
||
|
||
call dsort(fock_energies_tmp, iorder, tmp_list_size)
|
||
|
||
print*,'MOs after sorting them by f_p^p energies:'
|
||
do i = 1, tmp_list_size
|
||
k = iorder(i)
|
||
tmp_k = tmp_list(k)
|
||
print*, tmp_k, fock_energies_tmp(k)
|
||
do j = 1, ao_num
|
||
tmp_mo_coef(j,k) = mo_coef(j,tmp_k)
|
||
enddo
|
||
enddo
|
||
|
||
! Update the MOs after sorting them by energies
|
||
do i = 1, tmp_list_size
|
||
tmp_i = tmp_list(i)
|
||
do j = 1, ao_num
|
||
mo_coef(j,tmp_i) = tmp_mo_coef(j,i)
|
||
enddo
|
||
enddo
|
||
|
||
if (debug_hf) then
|
||
touch mo_coef
|
||
print*,'HF energy:', HF_energy
|
||
endif
|
||
print*,''
|
||
|
||
deallocate(iorder, fock_energies_tmp, tmp_list, tmp_mo_coef)
|
||
endif
|
||
|
||
enddo
|
||
|
||
touch mo_coef
|
||
call save_mos
|
||
|
||
end
|
||
|
||
#+END_SRC
|
||
|
||
|
||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||
function is_core(i)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! True if the orbital i is a core orbital
|
||
END_DOC
|
||
|
||
integer, intent(in) :: i
|
||
logical :: is_core
|
||
|
||
integer :: j
|
||
|
||
! Init
|
||
is_core = .False.
|
||
|
||
! Search
|
||
do j = 1, dim_list_core_orb
|
||
if (list_core(j) == i) then
|
||
is_core = .True.
|
||
exit
|
||
endif
|
||
enddo
|
||
|
||
end
|
||
|
||
function is_del(i)
|
||
|
||
implicit none
|
||
|
||
BEGIN_DOC
|
||
! True if the orbital i is a deleted orbital
|
||
END_DOC
|
||
|
||
integer, intent(in) :: i
|
||
logical :: is_del
|
||
|
||
integer :: j
|
||
|
||
! Init
|
||
is_del = .False.
|
||
|
||
! Search
|
||
do j = 1, dim_list_core_orb
|
||
if (list_core(j) == i) then
|
||
is_del = .True.
|
||
exit
|
||
endif
|
||
enddo
|
||
|
||
end
|
||
|
||
subroutine set_classes_loc()
|
||
|
||
implicit none
|
||
|
||
integer :: i
|
||
logical :: ok1, ok2
|
||
logical :: is_core, is_del
|
||
integer(bit_kind) :: res(N_int,2)
|
||
|
||
if (auto_mo_class) then
|
||
do i = 1, mo_num
|
||
if (is_core(i)) cycle
|
||
if (is_del(i)) cycle
|
||
call apply_hole(psi_det(1,1,1), 1, i, res, ok1, N_int)
|
||
call apply_hole(psi_det(1,1,1), 2, i, res, ok2, N_int)
|
||
if (ok1 .and. ok2) then
|
||
mo_class(i) = 'Inactive'
|
||
else if (.not. ok1 .and. .not. ok2) then
|
||
mo_class(i) = 'Virtual'
|
||
else
|
||
mo_class(i) = 'Active'
|
||
endif
|
||
enddo
|
||
touch mo_class
|
||
endif
|
||
|
||
end
|
||
|
||
subroutine unset_classes_loc()
|
||
|
||
implicit none
|
||
|
||
integer :: i
|
||
logical :: ok1, ok2
|
||
logical :: is_core, is_del
|
||
integer(bit_kind) :: res(N_int,2)
|
||
|
||
if (auto_mo_class) then
|
||
do i = 1, mo_num
|
||
if (is_core(i)) cycle
|
||
if (is_del(i)) cycle
|
||
mo_class(i) = 'Active'
|
||
enddo
|
||
touch mo_class
|
||
endif
|
||
|
||
end
|
||
#+END_SRC
|