9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00
qp2/src/mo_optimization/org/hessian_opt.org
2023-04-18 13:56:30 +02:00

25 KiB

Hessian

The hessian of the CI energy with respects to the orbital rotation is : (C-c C-x C-l)

\begin{align*} H_{pq,rs} &= \dfrac{\partial^2 E(x)}{\partial x_{pq}^2} \\ &= \mathcal{P}_{pq} \mathcal{P}_{rs} [ \frac{1}{2} \sum_u [\delta_{qr}(h_p^u \gamma_u^s + h_u^s \gamma_p^u) + \delta_{ps}(h_r^u \gamma_u^q + h_u^q \gamma_r^u)] -(h_p^s \gamma_r^q + h_r^q \gamma_p^s) \\ &+ \frac{1}{2} \sum_{tuv} [\delta_{qr}(v_{pt}^{uv} \Gamma_{uv}^{st} + v_{uv}^{st} \Gamma_{pt}^{uv}) + \delta_{ps}(v_{uv}^{qt} \Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})] \\ &+ \sum_{uv} (v_{pr}^{uv} \Gamma_{uv}^{qs} + v_{uv}^{qs} \Gamma_{pr}^{uv}) - \sum_{tu} (v_{pu}^{st} \Gamma_{rt}^{qu}+v_{pu}^{tr} \Gamma_{tr}^{qu}+v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts}) \end{align*}

With pq a permutation operator :

\begin{align*} \mathcal{P}_{pq}= 1 - (p \leftrightarrow q) \end{align*} \begin{align*} \mathcal{P}_{pq} \mathcal{P}_{rs} &= (1 - (p \leftrightarrow q))(1 - (r \leftrightarrow s)) \\ &= 1 - (p \leftrightarrow q) - (r \leftrightarrow s) + (p \leftrightarrow q, r \leftrightarrow s) \end{align*}

Where p,q,r,s,t,u,v are general spatial orbitals mo_num : the number of molecular orbitals $$h$$ : One electron integrals $$\gamma$$ : One body density matrix (state average in our case) $$v$$ : Two electron integrals $$\Gamma$$ : Two body density matrice (state average in our case)

The hessian is a 4D matrix of size mo_num, p,q,r,s,t,u,v take all the values between 1 and mo_num (1 and mo_num include).

To do that we compute all the pairs (pq,rs)

Source : Seniority-based coupled cluster theory

  1. Chem. Phys. 141, 244104 (2014); https://doi.org/10.1063/1.4904384

Thomas M. Henderson, Ireneusz W. Bulik, Tamar Stein, and Gustavo E. Scuseria

Compute the hessian of energy with respects to orbital rotations

Provided:

mo_num integer number of MOs
mo_one_e_integrals(mo_num,mo_num) double precision mono-electronic integrals
one_e_dm_mo(mo_num,mo_num) double precision one e- density matrix (state average)
two_e_dm_mo(mo_num,mo_num,mo_num) double precision two e- density matrix (state average)

Input:

n integer mo_num*(mo_num-1)/2

Output:

H(n,n) double precision Hessian matrix
h_tmpr(mo_num,mo_num,mo_num,mo_num) double precision Complete hessian matrix before the tranformation
in n by n matrix

Internal:

hessian(mo_num,mo_num,mo_num,mo_num) double precision temporary array containing the hessian before
the permutations
p, q, r, s integer indexes of the hessian elements
t, u, v integer indexes for the sums
pq, rs integer indexes for the transformation of the hessian
(4D -> 2D)
t1,t2,t3 double precision t3 = t2 - t1, time to compute the hessian
t4,t5,t6 double precision t6 = t5 - t4, time to compute each element
tmp_bi_int_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the bielectronic integrals
tmp_2rdm_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for the 2 body density matrix
ind_3(mo_num,mo_num,mo_num) double precision 3 indexes temporary array for matrix multiplication
tmp_accu(mo_num,mo_num) double precision temporary array
tmp_accu_sym(mo_num,mo_num) double precision temporary array

Function:

get_two_e_integral double precision bielectronic integrals
subroutine hessian_opt(n,H,h_tmpr)
  use omp_lib
  include 'constants.h' 

  implicit none
  
  ! Variables

  ! in
  integer, intent(in)           :: n 
  
  ! out
  double precision, intent(out) :: H(n,n),h_tmpr(mo_num,mo_num,mo_num,mo_num)
 
  ! internal
  double precision, allocatable :: hessian(:,:,:,:)!, h_tmpr(:,:,:,:)
  double precision, allocatable :: H_test(:,:)
  integer                       :: p,q
  integer                       :: r,s,t,u,v,k
  integer                       :: pq,rs
  double precision              :: t1,t2,t3,t4,t5,t6
  ! H_test   : monum**2 by mo_num**2 double precision matrix to debug the H matrix

  double precision, allocatable :: tmp_bi_int_3(:,:,:), tmp_2rdm_3(:,:,:), ind_3(:,:,:)
  double precision, allocatable :: tmp_accu(:,:), tmp_accu_sym(:,:), tmp_accu_shared(:,:),tmp_accu_sym_shared(:,:)

  ! Function 
  double precision              :: get_two_e_integral

  print*,''
  print*,'---hessian---'
  print*,'Use the full hessian'

  ! Allocation of shared arrays
  allocate(hessian(mo_num,mo_num,mo_num,mo_num))!,h_tmpr(mo_num,mo_num,mo_num,mo_num))
  allocate(tmp_accu_shared(mo_num,mo_num),tmp_accu_sym_shared(mo_num,mo_num))

  ! Calculations

  ! OMP 
  call omp_set_max_active_levels(1)

  !$OMP PARALLEL                                                     &
      !$OMP PRIVATE(                                                 &
      !$OMP   p,q,r,s, tmp_accu, tmp_accu_sym,                       &
      !$OMP   u,v,t, tmp_bi_int_3, tmp_2rdm_3, ind_3)                       &
      !$OMP SHARED(hessian,h_tmpr,H, mo_num,n, & 
      !$OMP mo_one_e_integrals, one_e_dm_mo, &
      !$OMP two_e_dm_mo,mo_integrals_map,tmp_accu_sym_shared, tmp_accu_shared,   &
      !$OMP t1,t2,t3,t4,t5,t6)&
      !$OMP DEFAULT(NONE)
 
  ! Allocation of private arrays 
  allocate(tmp_bi_int_3(mo_num,mo_num,mo_num))
  allocate(tmp_2rdm_3(mo_num,mo_num,mo_num), ind_3(mo_num,mo_num,mo_num))
  allocate(tmp_accu(mo_num,mo_num), tmp_accu_sym(mo_num,mo_num))

Initialization of the arrays

  !$OMP MASTER
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_accu_shared(p,q) = 0d0
    enddo
  enddo
  !$OMP END MASTER

  !$OMP MASTER
  do q = 1, mo_num
    do p = 1, mo_num
      tmp_accu_sym(p,q) = 0d0
    enddo
  enddo
  !$OMP END MASTER

  !$OMP DO
  do s=1,mo_num
    do r=1,mo_num
      do q=1,mo_num
        do p=1,mo_num
          hessian(p,q,r,s) = 0d0
        enddo
      enddo
    enddo
  enddo
  !$OMP ENDDO
 
  !$OMP MASTER
  CALL wall_TIME(t1)
  !$OMP END MASTER

Line 1, term 1

Without optimization the term 1 of the line 1 is :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

if (q==r) then do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,p) * one_e_dm_mo(u,s) &

  • mo_one_e_integrals(s,u) * one_e_dm_mo(p,u))

enddo endif

enddo enddo enddo enddo

We can write the formula as matrix multiplication. $$c_{p,s} = \sum_u a_{p,u} b_{u,s}$$

  !$OMP MASTER    
  CALL wall_TIME(t4)
  !$OMP END MASTER

  call dgemm('T','N', mo_num, mo_num, mo_num, 1d0, mo_one_e_integrals,&
             size(mo_one_e_integrals,1), one_e_dm_mo, size(one_e_dm_mo,1),&
             0d0, tmp_accu_shared, size(tmp_accu_shared,1))

  !$OMP DO
  do s = 1, mo_num
    do p = 1, mo_num

      tmp_accu_sym_shared(p,s) = 0.5d0 * (tmp_accu_shared(p,s) + tmp_accu_shared(s,p))

    enddo
  enddo 
  !$OMP END DO

  !$OMP DO
  do s = 1, mo_num
    do p = 1, mo_num
      do r = 1, mo_num

        hessian(p,r,r,s) = hessian(p,r,r,s) + tmp_accu_sym_shared(p,s)

      enddo
    enddo
  enddo
  !$OMP END DO
 
  !$OMP MASTER
  CALL wall_TIME(t5)
  t6=t5-t4
  print*,'l1 1',t6
  !$OMP END MASTER

Line 1, term 2

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

if (p==s) then do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & mo_one_e_integrals(u,r) * (one_e_dm_mo(u,q) &

  • mo_one_e_integrals(q,u) * (one_e_dm_mo(r,u))

enddo endif

enddo enddo enddo enddo

We can write the formula as matrix multiplication. $$c_{r,q} = \sum_u a_{r,u} b_{u,q}$$

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  call dgemm('T','N', mo_num, mo_num, mo_num, 1d0, mo_one_e_integrals,&
             size(mo_one_e_integrals,1), one_e_dm_mo, size(one_e_dm_mo,1),&
             0d0, tmp_accu_shared, size(tmp_accu_shared,1))

  !$OMP DO
  do r = 1, mo_num
    do q = 1, mo_num

      tmp_accu_sym_shared(q,r) = 0.5d0 * (tmp_accu_shared(q,r) + tmp_accu_shared(r,q))

    enddo
  enddo
  !OMP END DO

  !$OMP DO
  do r = 1, mo_num
    do q = 1, mo_num
      do s = 1, mo_num

        hessian(s,q,r,s) = hessian(s,q,r,s) + tmp_accu_sym_shared(q,r)

      enddo
    enddo
  enddo
  !OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6=t5-t4
  print*,'l1 2',t6
  !$OMP END MASTER

Line 1, term 3

Without optimization the third term is :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • mo_one_e_integrals(s,p) * one_e_dm_mo(r,q) &
  • mo_one_e_integrals(q,r) * one_e_dm_mo(p,s))

enddo enddo enddo enddo

We can just re-order the indexes

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER
  
  !$OMP DO
  do s = 1, mo_num
    do r = 1, mo_num
      do q = 1, mo_num
        do p = 1, mo_num

          hessian(p,q,r,s) = hessian(p,q,r,s) &
            - mo_one_e_integrals(s,p) * one_e_dm_mo(r,q)&
            - mo_one_e_integrals(q,r) * one_e_dm_mo(p,s)

        enddo
      enddo
    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6=t5-t4
  print*,'l1 3',t6
  !$OMP END MASTER

Line 2, term 1

Without optimization the fourth term is :

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

if (q==r) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(u,v,p,t,mo_integrals_map) * two_e_dm_mo(u,v,s,t) &

  • get_two_e_integral(s,t,u,v,mo_integrals_map) * two_e_dm_mo(p,t,u,v))

enddo enddo enddo endif

enddo enddo enddo enddo

Using bielectronic integral properties : get_two_e_integral(s,t,u,v,mo_integrals_map) = get_two_e_integral(u,v,s,t,mo_integrals_map)

Using the two electron density matrix properties : two_e_dm_mo(p,t,u,v) = two_e_dm_mo(u,v,p,t)

With t on the external loop, using temporary arrays for each t and by taking u,v as one variable a matrix multplication appears. $$c_{p,s} = \sum_{uv} a_{p,uv} b_{uv,s}$$

There is a kroenecker delta $$\delta_{qr}$$, so we juste compute the terms like : hessian(p,r,r,s)

  !$OMP MASTER 
  call wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do t = 1, mo_num
    
    do p = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num
 
          tmp_bi_int_3(u,v,p) = get_two_e_integral(u,v,p,t,mo_integrals_map)              

        enddo
      enddo
    enddo

    do p = 1, mo_num ! error, the p might be replace by a s
    ! it's a temporary array, the result by replacing p and s will be the same
      do v = 1, mo_num
        do u = 1, mo_num
 
          tmp_2rdm_3(u,v,p) = two_e_dm_mo(u,v,p,t)  

        enddo
      enddo
    enddo

    call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1.d0, &
               tmp_bi_int_3, mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, &
               0.d0, tmp_accu, size(tmp_accu,1))

    do p = 1, mo_num
      do s = 1, mo_num

        tmp_accu_sym(s,p) = 0.5d0 * (tmp_accu(p,s)+tmp_accu(s,p))

      enddo
    enddo

    !$OMP CRITICAL 
    do s = 1, mo_num
      do r = 1, mo_num
        do p = 1, mo_num

          hessian(p,r,r,s) = hessian(p,r,r,s) + tmp_accu_sym(p,s) 

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP MASTER
  call wall_TIME(t5)
  t6=t5-t4
  print*,'l2 1', t6 
  !$OMP END MASTER

Line 2, term 2

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

if (p==s) then do t = 1, mo_num do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) + 0.5d0 * ( & get_two_e_integral(q,t,u,v,mo_integrals_map) * two_e_dm_mo(r,t,u,v) &

  • get_two_e_integral(u,v,r,t,mo_integrals_map) * two_e_dm_mo(u,v,q,t))

enddo enddo enddo endif

enddo enddo enddo enddo

Using the two electron density matrix properties : get_two_e_integral(q,t,u,v,mo_integrals_map) = get_two_e_integral(u,v,q,t,mo_integrals_map)

Using the two electron density matrix properties : two_e_dm_mo(r,t,u,v) = two_e_dm_mo(u,v,r,t)

With t on the external loop, using temporary arrays for each t and by taking u,v as one variable a matrix multplication appears. $$c_{q,r} = \sum_uv a_{q,uv} b_{uv,r}$$

There is a kroenecker delta $$\delta_{ps}$$, so we juste compute the terms like : hessian(s,q,r,s)

  !******************************
  ! Opt Second line, second term
  !******************************

  !$OMP MASTER 
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do t = 1, mo_num

    do q = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

          tmp_bi_int_3(u,v,q) = get_two_e_integral(u,v,q,t,mo_integrals_map)

        enddo
      enddo
    enddo

    do r = 1, mo_num
      do v = 1, mo_num
        do u = 1, mo_num

           tmp_2rdm_3(u,v,r) = two_e_dm_mo(u,v,r,t)

        enddo
      enddo
    enddo

    call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1.d0, &
               tmp_bi_int_3 , mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, &
               0.d0, tmp_accu, size(tmp_accu,1))

    do r = 1, mo_num
      do q = 1, mo_num

        tmp_accu_sym(q,r) = 0.5d0 * (tmp_accu(q,r) + tmp_accu(r,q))

      enddo
    enddo

    !$OMP CRITICAL
    do r = 1, mo_num
      do q = 1, mo_num
        do s = 1, mo_num

          hessian(s,q,r,s) = hessian(s,q,r,s) + tmp_accu_sym(q,r)

        enddo
      enddo
    enddo
    !$OMP END CRITICAL

  enddo
  !$OMP END DO

  !$OMP MASTER
  CALL wall_TIME(t5)
  t6=t5-t4
  print*,'l2 2',t6
  !$OMP END MASTER

Line 3, term 1

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

do u = 1, mo_num do v = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s) &
  • get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)

enddo enddo

enddo enddo enddo enddo

Using the two electron density matrix properties : get_two_e_integral(u,v,p,r,mo_integrals_map) = get_two_e_integral(p,r,u,v,mo_integrals_map)

Using the two electron density matrix properties : two_e_dm_mo(u,v,q,s) = two_e_dm_mo(q,s,u,v)

With v on the external loop, using temporary arrays for each v and by taking p,r and q,s as one dimension a matrix multplication appears. $$c_{pr,qs} = \sum_u a_{pr,u} b_{u,qs}$$

Part 1

  !$OMP MASTER 
  call wall_TIME(t4)
  !$OMP END MASTER 

  !--------
  ! part 1
  ! get_two_e_integral(u,v,p,r,mo_integrals_map) * two_e_dm_mo(u,v,q,s)
  !--------

  !$OMP DO
  do v = 1, mo_num

    do u = 1, mo_num 
      do r = 1, mo_num
        do p = 1, mo_num

            tmp_bi_int_3(p,r,u) = get_two_e_integral(p,r,u,v,mo_integrals_map)

        enddo
      enddo
    enddo

    do s = 1, mo_num
      do q = 1, mo_num
        do u = 1, mo_num

          tmp_2rdm_3(u,q,s) = two_e_dm_mo(q,s,u,v)

        enddo
      enddo
    enddo
    
    do s = 1, mo_num
                
      call dgemm('N','N',mo_num*mo_num, mo_num, mo_num, 1d0, tmp_bi_int_3,&
                 size(tmp_bi_int_3,1)*size(tmp_bi_int_3,2), tmp_2rdm_3(1,1,s),&
                 size(tmp_2rdm_3,1), 0d0, ind_3, size(ind_3,1) * size(ind_3,2))

      !$OMP CRITICAL
      do r = 1, mo_num
        do q = 1, mo_num
          do p = 1, mo_num
            hessian(p,q,r,s) = hessian(p,q,r,s) + ind_3(p,r,q)
          enddo
        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO

With v on the external loop, using temporary arrays for each v and by taking q,s and p,r as one dimension a matrix multplication appears. $$c_{qs,pr} = \sum_u a_{qs,u}*b_{u,pr}$$

Part 2

  !--------
  ! part 2
  ! get_two_e_integral(q,s,u,v,mo_integrals_map) * two_e_dm_mo(p,r,u,v)
  !--------

  !$OMP DO
  do v = 1, mo_num

    do u = 1, mo_num
      do s = 1, mo_num
        do q = 1, mo_num

            tmp_bi_int_3(q,s,u) = get_two_e_integral(q,s,u,v,mo_integrals_map)

        enddo
      enddo
    enddo

    do r = 1, mo_num
      do p = 1, mo_num
        do u = 1, mo_num

          tmp_2rdm_3(u,p,r) = two_e_dm_mo(p,r,u,v)

        enddo
      enddo
    enddo

    do r = 1, mo_num
      call dgemm('N','N', mo_num*mo_num, mo_num, mo_num, 1d0, tmp_bi_int_3,& 
                 size(tmp_bi_int_3,1)*size(tmp_bi_int_3,2), tmp_2rdm_3(1,1,r),&
                 size(tmp_2rdm_3,1), 0d0, ind_3, size(ind_3,1) * size(ind_3,2))

      !$OMP CRITICAL
      do s = 1, mo_num
        do q = 1, mo_num
          do p = 1, mo_num
            hessian(p,q,r,s) = hessian(p,q,r,s) + ind_3(q,s,p)
          enddo
        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO
   
  !$OMP MASTER
  call wall_TIME(t5)
  t6 = t5 - t4
  print*,'l3 1', t6
  !$OMP END MASTER

Line 3, term 2

do p = 1, mo_num do q = 1, mo_num do r = 1, mo_num do s = 1, mo_num

do t = 1, mo_num do u = 1, mo_num

hessian(p,q,r,s) = hessian(p,q,r,s) &

  • get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u) &
  • get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u) &
  • get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) &
  • get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)

enddo enddo

enddo enddo enddo enddo

With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$

Part 1

  !--------
  ! Part 1 
  ! - get_two_e_integral(s,t,p,u,mo_integrals_map) * two_e_dm_mo(r,t,q,u)
  !--------

  !$OMP MASTER
  CALL wall_TIME(t4) 
  !$OMP END MASTER

  !$OMP DO
  do q = 1, mo_num

    do r = 1, mo_num
      do t = 1, mo_num
        do u = 1, mo_num

          tmp_2rdm_3(u,t,r) = two_e_dm_mo(q,u,r,t)

        enddo
      enddo
    enddo

    do p = 1, mo_num

      do s = 1, mo_num
        do t = 1, mo_num
          do u = 1, mo_num

            tmp_bi_int_3(u,t,s) = - get_two_e_integral(u,s,t,p,mo_integrals_map)

          enddo
        enddo
      enddo

      call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3,&
                 mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, 0d0, tmp_accu, mo_num)

      !$OMP CRITICAL
      do s = 1, mo_num
        do r = 1, mo_num

           hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r)

        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO

With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$

Part 2

  !--------
  ! Part 2
  !- get_two_e_integral(t,s,p,u,mo_integrals_map) * two_e_dm_mo(t,r,q,u)
  !--------
  
  !$OMP DO 
  do q = 1, mo_num

    do r = 1, mo_num
      do t = 1, mo_num
        do u = 1, mo_num

          tmp_2rdm_3(u,t,r) = two_e_dm_mo(q,u,t,r)

        enddo
      enddo
    enddo
    
    do p = 1, mo_num

      do s = 1, mo_num
        do t = 1, mo_num
          do u = 1, mo_num

            tmp_bi_int_3(u,t,s) = - get_two_e_integral(u,t,s,p,mo_integrals_map)

          enddo
        enddo
      enddo   

      call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_bi_int_3,&
                 mo_num*mo_num, tmp_2rdm_3, mo_num*mo_num, 0d0, tmp_accu, mo_num)

      !$OMP CRITICAL
      do s = 1, mo_num
        do r = 1, mo_num

          hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r)

        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO

With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$

Part 3

  !--------
  ! Part 3
  !- get_two_e_integral(q,u,r,t,mo_integrals_map) * two_e_dm_mo(p,u,s,t) 
  !--------
 
  !$OMP DO 
  do q = 1, mo_num

    do r = 1, mo_num
      do t = 1, mo_num
        do u = 1, mo_num

          tmp_bi_int_3(u,t,r) = - get_two_e_integral(u,q,t,r,mo_integrals_map)

        enddo
      enddo
    enddo

    do p = 1, mo_num

      do s = 1, mo_num
        do t = 1, mo_num
          do u = 1, mo_num

            tmp_2rdm_3(u,t,s) = two_e_dm_mo(p,u,s,t)

          enddo
        enddo
      enddo

      call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_2rdm_3,&
                 mo_num*mo_num, tmp_bi_int_3, mo_num*mo_num, 0d0, tmp_accu, mo_num)

      !$OMP CRITICAL
      do s = 1, mo_num
        do r = 1, mo_num

          hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r)

        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO

With q on the external loop, using temporary arrays for each p and q, and taking u,v as one variable, a matrix multiplication appears: $$c_{r,s} = \sum_{ut} a_{r,ut} b_{ut,s}$$

Part 4

  !--------
  ! Part 4
  ! - get_two_e_integral(q,u,t,r,mo_integrals_map) * two_e_dm_mo(p,u,t,s)
  !--------
  
  !$OMP DO
  do q = 1, mo_num

    do r = 1, mo_num
      do t = 1, mo_num
        do u = 1, mo_num

          tmp_bi_int_3(u,t,r) = - get_two_e_integral(u,t,r,q,mo_integrals_map)

        enddo
      enddo
    enddo

    do p = 1, mo_num

      do s = 1, mo_num
        do t = 1, mo_num
          do u = 1, mo_num

            tmp_2rdm_3(u,t,s) = two_e_dm_mo(p,u,t,s)

          enddo
        enddo
      enddo

      call dgemm('T','N', mo_num, mo_num, mo_num*mo_num, 1d0, tmp_2rdm_3,&
                 mo_num*mo_num, tmp_bi_int_3, mo_num*mo_num, 0d0, tmp_accu, mo_num)

      !$OMP CRITICAL
      do s = 1, mo_num
        do r = 1, mo_num

          hessian(p,q,r,s) = hessian(p,q,r,s) + tmp_accu(s,r)

        enddo
      enddo
      !$OMP END CRITICAL

    enddo

  enddo
  !$OMP END DO  

  !$OMP MASTER
  call wall_TIME(t5)
  t6 = t5-t4
  print*,'l3 2',t6
  !$OMP END MASTER

  !$OMP MASTER
  CALL wall_TIME(t2)
  t3 = t2 -t1
  print*,'Time to compute the hessian : ', t3
  !$OMP END MASTER

Deallocation of private arrays

In the omp section !

 deallocate(tmp_bi_int_3, tmp_2rdm_3, tmp_accu, tmp_accu_sym, ind_3)

Permutations

As we mentioned before there are two permutation operator in the formula : Hessian(p,q,r,s) = P_pq P_rs […] => Hessian(p,q,r,s) = (p,q,r,s) - (q,p,r,s) - (p,q,s,r) + (q,p,s,r)

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do s = 1, mo_num
    do r = 1, mo_num
      do q = 1, mo_num
        do p = 1, mo_num

          h_tmpr(p,q,r,s) = (hessian(p,q,r,s) - hessian(q,p,r,s) - hessian(p,q,s,r) + hessian(q,p,s,r))

        enddo
      enddo
    enddo
  enddo
  !$OMP END DO

  !$OMP MASTER
  call wall_TIME(t5)
  t6 = t5-t4
  print*,'Time for permutations :',t6
  !$OMP END MASTER

4D -> 2D matrix

We need a 2D matrix for the Newton method's. Since the Hessian is "antisymmetric" : $$H_{pq,rs} = -H_{rs,pq}$$ We can write it as a 2D matrix, N by N, with N = mo_num(mo_num-1)/2 with p<q and r<s

  !$OMP MASTER
  CALL wall_TIME(t4)
  !$OMP END MASTER

  !$OMP DO
  do rs = 1, n
    call vec_to_mat_index(rs,r,s)
    do pq = 1, n
      call vec_to_mat_index(pq,p,q)
      H(pq,rs) = h_tmpr(p,q,r,s)   
    enddo
  enddo
  !$OMP END DO 

  !$OMP MASTER
  call wall_TIME(t5)
  t6 = t5-t4
  print*,'4D -> 2D :',t6
  !$OMP END MASTER

  !$OMP END PARALLEL
  call omp_set_max_active_levels(4)

  ! Display
  if (debug) then 
    print*,'2D Hessian matrix'
    do pq = 1, n
      write(*,'(100(F10.5))') H(pq,:)
    enddo 
  endif

Deallocation of shared arrays, end

  deallocate(hessian)!,h_tmpr)
! h_tmpr is intent out in order to debug the subroutine
! It's why we don't deallocate it

  print*,'---End hessian---'

end subroutine