9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-01 05:33:40 +02:00

Compare commits

...

3 Commits

Author SHA1 Message Date
2ef517488c Optimized 1rdm 2019-06-26 01:43:16 +02:00
a128c20afa CASSCF works 2019-06-26 00:58:17 +02:00
5902f3231e Cleaned neworbs 2019-06-26 00:23:23 +02:00
12 changed files with 226 additions and 526 deletions

View File

@ -1,6 +1,6 @@
! -*- F90 -*- ! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard] BEGIN_PROVIDER [logical, bavard]
bavard=.true. bavard=.true.
bavard=.false. ! bavard=.false.
END_PROVIDER END_PROVIDER

View File

@ -55,7 +55,6 @@
end do end do
end do end do
write(6,*) ' provided integrals (PQ|xx) '
END_PROVIDER END_PROVIDER
@ -116,7 +115,6 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_a
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (Px|xQ) '
END_PROVIDER END_PROVIDER
@ -146,6 +144,5 @@ BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER END_PROVIDER

View File

@ -84,7 +84,6 @@
end do end do
end do end do
end do end do
write(6,*) ' transformed PQxx'
END_PROVIDER END_PROVIDER
@ -176,7 +175,6 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+
end do end do
end do end do
end do end do
write(6,*) ' transformed PxxQ '
END_PROVIDER END_PROVIDER
@ -267,7 +265,6 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' transformed tuvP '
END_PROVIDER END_PROVIDER

View File

@ -12,24 +12,32 @@ subroutine run
implicit none implicit none
double precision :: energy_old, energy double precision :: energy_old, energy
logical :: converged logical :: converged
integer :: iteration
converged = .False. converged = .False.
energy = 0.d0 energy = 0.d0
! do while (.not.converged) mo_label = "MCSCF"
N_det = 1 iteration = 1
TOUCH N_det psi_det psi_coef do while (.not.converged)
call run_cipsi call run_cipsi
write(6,*) ' total energy = ',eone+etwo+ecore
mo_label = "MCSCF"
mo_label = "Natural"
mo_coef(:,:) = NatOrbsFCI(:,:)
call save_mos
call driver_optorb
energy_old = energy energy_old = energy
energy = eone+etwo+ecore energy = eone+etwo+ecore
converged = dabs(energy - energy_old) < 1.d-10
! enddo call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration')
call write_double(6,energy,'CAS-SCF energy')
call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf
mo_coef = NewOrbs
call save_mos
call map_deinit(mo_integrals_map)
N_det = 1
iteration += 1
FREE mo_integrals_map mo_two_e_integrals_in_map psi_det psi_coef
SOFT_TOUCH mo_coef N_det
enddo
end end

View File

@ -1,70 +1,19 @@
use bitmasks use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ] BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
!
END_DOC
implicit none implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart BEGIN_DOC
integer :: ierr ! the first-order density matrix in the basis of the starting MOs.
integer(bit_kind) :: det_mu(N_int,2) ! matrix is state averaged.
integer(bit_kind) :: det_mu_ex(N_int,2) END_DOC
integer(bit_kind) :: det_mu_ex1(N_int,2) integer :: t,u
integer(bit_kind) :: det_mu_ex2(N_int,2)
real*8 :: phase1,phase2,term
integer :: nu1,nu2
integer :: ierr1,ierr2
real*8 :: cI_mu(N_states)
write(6,*) ' providing density matrices D0 and P0 ' do u=1,n_act_orb
D0tu = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb do t=1,n_act_orb
ipart=list_act(t) D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
do u=1,n_act_orb one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
ihole=list_act(u) enddo
! apply E_tu enddo
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
D0tu(t,u)+=term
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
D0tu(t,u)+=term
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
end do
end do
END_PROVIDER END_PROVIDER
@ -90,7 +39,9 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12 integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22 integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
write(6,*) ' providing density matrices D0 and P0 ' if (bavard) then
write(6,*) ' providing density matrix P0'
endif
P0tuvx = 0.d0 P0tuvx = 0.d0

View File

@ -31,6 +31,8 @@ subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
! get the number in the list ! get the number in the list
found=.false. found=.false.
nu=0 nu=0
!TODO BOTTLENECK
do while (.not.found) do while (.not.found)
nu+=1 nu+=1
if (nu.gt.N_det) then if (nu.gt.N_det) then
@ -50,13 +52,6 @@ subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
end do end do
end if end if
end do end do
! if (found) then
! if (nu.eq.-1) then
! write(6,*) ' image not found in the list, thus nu = ',nu
! else
! write(6,*) ' found in the list as No ',nu,' phase = ',phase
! end if
! end if
end if end if
! !
! we found the new string, the phase, and possibly the number in the list ! we found the new string, the phase, and possibly the number in the list

View File

@ -1,32 +1,3 @@
subroutine driver_optorb subroutine driver_optorb
implicit none implicit none
integer :: i,j end
write(6,*)
! write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
write(6,*) ' energy improvement = ',energy_improvement
! write(6,*) ' new energy = ',psi_energy_with_nucl_rep(1)+energy_improvement
write(6,*)
write(6,*)
write(6,*) ' creating new orbitals '
do i=1,mo_num
write(6,*) ' Orbital No ',i
write(6,'(5F14.6)') (NewOrbs(j,i),j=1,mo_num)
write(6,*)
end do
mo_label = "Natural"
do i=1,mo_num
do j=1,ao_num
mo_coef(j,i)=NewOrbs(j,i)
end do
end do
call save_mos
call map_deinit(mo_integrals_map)
FREE mo_integrals_map mo_coef mo_two_e_integrals_in_map
write(6,*)
write(6,*) ' ... all done '
end

View File

@ -6,7 +6,6 @@ BEGIN_PROVIDER [ integer, nMonoEx ]
END_DOC END_DOC
implicit none implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
@ -87,9 +86,11 @@ BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
norm_grad+=gradvec(indx)*gradvec(indx) norm_grad+=gradvec(indx)*gradvec(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
write(6,*) if (bavard) then
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
endif
END_PROVIDER END_PROVIDER
@ -118,17 +119,11 @@ subroutine calc_grad_elem(ihole,ipart,res)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu & call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr) ,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then if (ierr.eq.1) then
! write(6,*)
! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int & call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do end do
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if end if
end do end do
end do end do
@ -176,9 +171,11 @@ BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
norm_grad+=gradvec2(indx)*gradvec2(indx) norm_grad+=gradvec2(indx)*gradvec2(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
write(6,*) if (bavard) then
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
endif
END_PROVIDER END_PROVIDER

View File

@ -14,8 +14,10 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
character*3 :: iexc,jexc character*3 :: iexc,jexc
real*8 :: res real*8 :: res
write(6,*) ' providing Hessian matrix hessmat ' if (bavard) then
write(6,*) ' nMonoEx = ',nMonoEx write(6,*) ' providing Hessian matrix hessmat '
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx do indx=1,nMonoEx
do jndx=1,nMonoEx do jndx=1,nMonoEx
@ -32,8 +34,6 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
jpart=excit(2,jndx) jpart=excit(2,jndx)
jexc=excit_class(jndx) jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res) call calc_hess_elem(ihole,ipart,jhole,jpart,res)
! write(6,*) ' Hessian ',ihole,'->',ipart &
! ,' (',iexc,')',jhole,'->',jpart,' (',jexc,')',res
hessmat(indx,jndx)=res hessmat(indx,jndx)=res
hessmat(jndx,indx)=res hessmat(jndx,indx)=res
end do end do
@ -198,8 +198,10 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
real*8 :: hessmat_iatb real*8 :: hessmat_iatb
real*8 :: hessmat_taub real*8 :: hessmat_taub
write(6,*) ' providing Hessian matrix hessmat2 ' if (bavard) then
write(6,*) ' nMonoEx = ',nMonoEx write(6,*) ' providing Hessian matrix hessmat2 '
write(6,*) ' nMonoEx = ',nMonoEx
endif
indx=1 indx=1
do i=1,n_core_orb do i=1,n_core_orb
@ -214,7 +216,6 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
do u=ustart,n_act_orb do u=ustart,n_act_orb
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u) hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
hessmat2(jndx,indx)=hessmat2(indx,jndx) hessmat2(jndx,indx)=hessmat2(indx,jndx)
! write(6,*) ' result I :',i,t,j,u,indx,jndx,hessmat(indx,jndx),hessmat2(indx,jndx)
jndx+=1 jndx+=1
end do end do
end do end do
@ -294,7 +295,6 @@ real*8 function hessmat_itju(i,t,j,u)
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2 real*8 :: term,t2
! write(6,*) ' hessmat_itju ',i,t,j,u
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
if (i.eq.j) then if (i.eq.j) then
@ -340,8 +340,6 @@ real*8 function hessmat_itju(i,t,j,u)
end do end do
end do end do
end do end do
!!! write(6,*) ' direct diff ',i,t,j,u,term,term2
!!! term=term2
end if end if
else else
! it/ju ! it/ju
@ -382,7 +380,6 @@ real*8 function hessmat_itja(i,t,j,a)
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itja ',i,t,j,a
! it/ja ! it/ja
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
@ -416,7 +413,6 @@ real*8 function hessmat_itua(i,t,u,a)
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itua ',i,t,u,a
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
@ -457,7 +453,6 @@ real*8 function hessmat_iajb(i,a,j,b)
implicit none implicit none
integer :: i,a,j,b,ii,aa,jj,bb integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iajb ',i,a,j,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
@ -495,7 +490,6 @@ real*8 function hessmat_iatb(i,a,t,b)
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iatb ',i,a,t,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
tt=list_act(t) tt=list_act(t)
@ -552,7 +546,6 @@ real*8 function hessmat_taub(t,a,u,b)
end do end do
end do end do
term=t1+t2+t3 term=t1+t2+t3
! write(6,*) ' Hess taub ',t,a,t1,t2,t3
else else
bb=list_virt(b) bb=list_virt(b)
! ta/tb b/=a ! ta/tb b/=a

View File

@ -14,10 +14,12 @@
occnum(list_act(i))=occ_act(n_act_orb-i+1) occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do end do
write(6,*) ' occupation numbers ' if (bavard) then
do i=1,mo_num write(6,*) ' occupation numbers '
write(6,*) i,occnum(i) do i=1,mo_num
end do write(6,*) i,occnum(i)
end do
endif
END_PROVIDER END_PROVIDER
@ -32,14 +34,12 @@ END_PROVIDER
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb) call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
if (bavard) then if (bavard) then
! write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx integer :: nmx
real*8 :: xmx real*8 :: xmx
do i=1,n_act_orb do i=1,n_act_orb
@ -152,7 +152,6 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
end do end do
end do end do
end do end do
write(6,*) ' transformed P0tuvx '
END_PROVIDER END_PROVIDER
@ -198,7 +197,6 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
one_ints_no(j,list_act(p))=d(p) one_ints_no(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed one_ints '
END_PROVIDER END_PROVIDER
@ -226,148 +224,5 @@ BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
NatOrbsFCI(j,list_act(p))=d(p) NatOrbsFCI(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed orbitals '
END_PROVIDER END_PROVIDER
subroutine trf_to_natorb()
implicit none
BEGIN_DOC
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
END_DOC
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
! we recalculate total energies
write(6,*)
write(6,*) ' recalculating energies after the transformation '
write(6,*)
write(6,*)
real*8 :: e_one_all
real*8 :: e_two_all
integer :: ii
integer :: jj
integer :: t3
integer :: tt
integer :: u3
integer :: uu
integer :: v
integer :: v3
integer :: vv
integer :: x
integer :: x3
integer :: xx
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
e_two_all += occnum(list_act(t)) * &
(2.d0*bielec_PQxx_no(tt,tt,i,i) - bielec_PQxx_no(tt,ii,i,t3))
end do
end do
do t=1,n_act_orb
tt=list_act(t)
e_one_all += occnum(list_act(t))*one_ints_no(tt,tt)
do u=1,n_act_orb
uu=list_act(u)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx_no(t,u,v,x)*bielec_PQxx_no(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*one_ints_no(ii,ii)
ecore_bis+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ_no(ii,i,j,jj)-bielec_PxxQ_no(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
eone += occnum(list_act(t))*one_ints_no(tt,tt)
eone_bis += occnum(list_act(t))*one_ints_no(tt,tt)
do i=1,n_core_orb
ii=list_core(i)
eone += occnum(list_act(t)) * &
(2.D0*bielec_PQxx_no(tt,tt,i,i ) - bielec_PQxx_no(tt,ii,i,t3))
eone_bis += occnum(list_act(t)) * &
(2.D0*bielec_PxxQ_no(tt,t3,i,ii) - bielec_PxxQ_no(tt,i ,i,tt))
end do
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx_no(tt,uu,v3,x3)
h2=bielec_PxxQ_no(tt,u3,v3,xx)
h3=bielecCI_no(t,u,v,xx)
etwo +=P0tuvx_no(t,u,v,x)*h1
etwo_bis+=P0tuvx_no(t,u,v,x)*h2
etwo_ter+=P0tuvx_no(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
SOFT_TOUCH ecore ecore_bis eone eone_bis etwo etwo_bis etwo_ter
end subroutine trf_to_natorb

View File

@ -1,222 +1,178 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)] BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
implicit none implicit none
integer :: i,j BEGIN_DOC
do i=1,nMonoEx+1 ! Single-excitation matrix
do j=1,nMonoEx+1 END_DOC
SXmatrix(i,j)=0.D0
end do integer :: i,j
end do
do i=1,nMonoEx+1
do i=1,nMonoEx do j=1,nMonoEx+1
SXmatrix(1,i+1)=gradvec2(i) SXmatrix(i,j)=0.D0
SXmatrix(1+i,1)=gradvec2(i) end do
end do end do
do i=1,nMonoEx do i=1,nMonoEx
do j=1,nMonoEx SXmatrix(1,i+1)=gradvec2(i)
SXmatrix(i+1,j+1)=hessmat2(i,j) SXmatrix(1+i,1)=gradvec2(i)
SXmatrix(j+1,i+1)=hessmat2(i,j) end do
end do
end do do i=1,nMonoEx
do j=1,nMonoEx
if (bavard) then SXmatrix(i+1,j+1)=hessmat2(i,j)
do i=2,nMonoEx+1 SXmatrix(j+1,i+1)=hessmat2(i,j)
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i) end do
end do end do
end if
if (bavard) then
do i=2,nMonoEx+1
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do
end if
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)] BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)] &BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
END_PROVIDER implicit none
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
END_PROVIDER
BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)] BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)]
&BEGIN_PROVIDER [real*8, energy_improvement] &BEGIN_PROVIDER [real*8, energy_improvement]
implicit none implicit none
integer :: ierr,matz,i BEGIN_DOC
real*8 :: c0 ! Best eigenvector of the single-excitation matrix
END_DOC
integer :: ierr,matz,i
real*8 :: c0
if (bavard) then
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
energy_improvement = SXeigenval(1)
integer :: best_vector
real*8 :: best_overlap
best_overlap=0.D0
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
best_overlap=abs(SXeigenvec(1,i))
best_vector=i
end if
end if
end do
energy_improvement = SXeigenval(best_vector)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
write(6,*) ' weight of the 1st element ',c0
endif
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1) c0=SXeigenvec(1,best_vector)
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
energy_improvement = SXeigenval(1)
integer :: best_vector do i=1,nMonoEx+1
real*8 :: best_overlap SXvector(i)=SXeigenvec(i,best_vector)/c0
best_overlap=0.D0 end do
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
best_overlap=abs(SXeigenvec(1,i))
best_vector=i
end if
end if
end do
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
energy_improvement = SXeigenval(best_vector)
c0=SXeigenvec(1,best_vector)
write(6,*) ' weight of the 1st element ',c0
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector)/c0
! write(6,*) ' component No ',i,' : ',SXvector(i)
end do
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ] BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ]
implicit none implicit none
integer :: i,j,ialph BEGIN_DOC
! Updated orbitals
! form the exponential of the Orbital rotations END_DOC
call get_orbrotmat integer :: i,j,ialph
! form the new orbitals
do i=1,ao_num call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
do j=1,mo_num NatOrbsFCI, size(NatOrbsFCI,1), &
NewOrbs(i,j)=0.D0 Umat, size(Umat,1), 0.d0, &
end do NewOrbs, size(NewOrbs,1))
end do
do ialph=1,ao_num
do i=1,mo_num
wrkline(i)=mo_coef(ialph,i)
end do
do i=1,mo_num
do j=1,mo_num
NewOrbs(ialph,i)+=Umat(i,j)*wrkline(j)
end do
end do
end do
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, Tpotmat, (mo_num,mo_num) ] BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
&BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ] implicit none
&BEGIN_PROVIDER [real*8, wrkline, (mo_num) ] BEGIN_DOC
&BEGIN_PROVIDER [real*8, Tmat, (mo_num,mo_num) ] ! Orbital rotation matrix
END_PROVIDER END_DOC
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
subroutine get_orbrotmat logical :: converged
implicit none
integer :: i,j,indx,k,iter,t,a,ii,tt,aa real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
real*8 :: sum real*8 :: Tmat(mo_num,mo_num)
logical :: converged real*8 :: f
! the orbital rotation matrix T
! the orbital rotation matrix T Tmat(:,:)=0.D0
do i=1,mo_num indx=1
do j=1,mo_num do i=1,n_core_orb
Tmat(i,j)=0.D0 ii=list_core(i)
Umat(i,j)=0.D0 do t=1,n_act_orb
Tpotmat(i,j)=0.D0 tt=list_act(t)
end do indx+=1
Tpotmat(i,i)=1.D0 Tmat(ii,tt)= SXvector(indx)
end do Tmat(tt,ii)=-SXvector(indx)
end do
indx=1 end do
do i=1,n_core_orb do i=1,n_core_orb
ii=list_core(i) ii=list_core(i)
do t=1,n_act_orb do a=1,n_virt_orb
tt=list_act(t) aa=list_virt(a)
indx+=1 indx+=1
Tmat(ii,tt)= SXvector(indx) Tmat(ii,aa)= SXvector(indx)
Tmat(tt,ii)=-SXvector(indx) Tmat(aa,ii)=-SXvector(indx)
end do end do
end do end do
do i=1,n_core_orb do t=1,n_act_orb
ii=list_core(i) tt=list_act(t)
do a=1,n_virt_orb do a=1,n_virt_orb
aa=list_virt(a) aa=list_virt(a)
indx+=1 indx+=1
Tmat(ii,aa)= SXvector(indx) Tmat(tt,aa)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx) Tmat(aa,tt)=-SXvector(indx)
end do end do
end do end do
do t=1,n_act_orb
tt=list_act(t) ! Form the exponential
do a=1,n_virt_orb
aa=list_virt(a) Tpotmat(:,:)=0.D0
indx+=1 Umat(:,:) =0.D0
Tmat(tt,aa)= SXvector(indx) do i=1,mo_num
Tmat(aa,tt)=-SXvector(indx) Tpotmat(i,i)=1.D0
end do Umat(i,i) =1.d0
end do end do
iter=0
write(6,*) ' the T matrix ' converged=.false.
do indx=1,nMonoEx do while (.not.converged)
i=excit(1,indx) iter+=1
j=excit(2,indx) f = 1.d0 / dble(iter)
! if (abs(Tmat(i,j)).gt.1.D0) then Tpotmat2(:,:) = Tpotmat(:,:) * f
! write(6,*) ' setting matrix element ',i,j,' of ',Tmat(i,j),' to ' & call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
! , sign(1.D0,Tmat(i,j)) Tpotmat2, size(Tpotmat2,1), &
! Tmat(i,j)=sign(1.D0,Tmat(i,j)) Tmat, size(Tmat,1), 0.d0, &
! Tmat(j,i)=-Tmat(i,j) Tpotmat, size(Tpotmat,1))
! end if Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
if (abs(Tmat(i,j)).gt.1.D-9) write(6,9901) i,j,excit_class(indx),Tmat(i,j)
9901 format(' ',i4,' -> ',i4,' (',A3,') : ',E14.6) converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do end do
write(6,*)
write(6,*) ' forming the matrix exponential '
write(6,*)
! form the exponential
iter=0
converged=.false.
do while (.not.converged)
iter+=1
! add the next term
do i=1,mo_num
do j=1,mo_num
Umat(i,j)+=Tpotmat(i,j)
end do
end do
! next power of T, we multiply Tpotmat with Tmat/iter
do i=1,mo_num
do j=1,mo_num
wrkline(j)=Tpotmat(i,j)/dble(iter)
Tpotmat(i,j)=0.D0
end do
do j=1,mo_num
do k=1,mo_num
Tpotmat(i,j)+=wrkline(k)*Tmat(k,j)
end do
end do
end do
! Convergence test
sum=0.D0
do i=1,mo_num
do j=1,mo_num
sum+=abs(Tpotmat(i,j))
end do
end do
write(6,*) ' Iteration No ',iter,' Sum = ',sum
if (sum.lt.1.D-6) then
converged=.true.
end if
if (iter.ge.NItExpMax) then
stop ' no convergence '
end if
end do
write(6,*)
write(6,*) ' Converged ! '
write(6,*)
end subroutine get_orbrotmat
BEGIN_PROVIDER [integer, NItExpMax]
NItExpMax=100
END_PROVIDER END_PROVIDER

View File

@ -42,8 +42,6 @@
end do end do
end do end do
end do end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion ecore_bis=nuclear_repulsion
do i=1,n_core_orb do i=1,n_core_orb
@ -98,24 +96,6 @@
end do end do
end do end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
write(6,*) ' nuclear (qp) = ',nuclear_repulsion
write(6,*) ' core energy (qp) = ',core_energy
write(6,*) ' 1el energy (qp) = ',psi_energy_h_core(1)
write(6,*) ' 2el energy (qp) = ',psi_energy_two_e(1)
write(6,*) ' nuc + 1 + 2 (qp) = ',nuclear_repulsion+psi_energy_h_core(1)+psi_energy_two_e(1)
write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
END_PROVIDER END_PROVIDER