mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 03:23:29 +01:00
Cleaned neworbs
This commit is contained in:
parent
6531181316
commit
5902f3231e
@ -21,10 +21,6 @@ subroutine run
|
||||
call run_cipsi
|
||||
|
||||
write(6,*) ' total energy = ',eone+etwo+ecore
|
||||
mo_label = "MCSCF"
|
||||
mo_label = "Natural"
|
||||
mo_coef(:,:) = NatOrbsFCI(:,:)
|
||||
call save_mos
|
||||
|
||||
call driver_optorb
|
||||
energy_old = energy
|
||||
|
@ -1,222 +1,172 @@
|
||||
! -*- F90 -*-
|
||||
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
||||
implicit none
|
||||
integer :: i,j
|
||||
do i=1,nMonoEx+1
|
||||
do j=1,nMonoEx+1
|
||||
SXmatrix(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx+1
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Single-excitation matrix
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
|
||||
do i=1,nMonoEx+1
|
||||
do j=1,nMonoEx+1
|
||||
SXmatrix(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx+1
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
||||
END_PROVIDER
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/eigenvalues of the single-excitation matrix
|
||||
END_DOC
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [real*8, energy_improvement]
|
||||
implicit none
|
||||
integer :: ierr,matz,i
|
||||
real*8 :: c0
|
||||
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
||||
write(6,*)
|
||||
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
||||
energy_improvement = SXeigenval(1)
|
||||
|
||||
integer :: best_vector
|
||||
real*8 :: best_overlap
|
||||
best_overlap=0.D0
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
|
||||
best_overlap=abs(SXeigenvec(1,i))
|
||||
best_vector=i
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
||||
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
|
||||
energy_improvement = SXeigenval(best_vector)
|
||||
|
||||
c0=SXeigenvec(1,best_vector)
|
||||
write(6,*) ' weight of the 1st element ',c0
|
||||
do i=1,nMonoEx+1
|
||||
SXvector(i)=SXeigenvec(i,best_vector)/c0
|
||||
! write(6,*) ' component No ',i,' : ',SXvector(i)
|
||||
end do
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Best eigenvector of the single-excitation matrix
|
||||
END_DOC
|
||||
integer :: ierr,matz,i
|
||||
real*8 :: c0
|
||||
|
||||
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
||||
write(6,*)
|
||||
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
||||
energy_improvement = SXeigenval(1)
|
||||
|
||||
integer :: best_vector
|
||||
real*8 :: best_overlap
|
||||
best_overlap=0.D0
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
|
||||
best_overlap=abs(SXeigenvec(1,i))
|
||||
best_vector=i
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
||||
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
|
||||
energy_improvement = SXeigenval(best_vector)
|
||||
|
||||
c0=SXeigenvec(1,best_vector)
|
||||
write(6,*) ' weight of the 1st element ',c0
|
||||
do i=1,nMonoEx+1
|
||||
SXvector(i)=SXeigenvec(i,best_vector)/c0
|
||||
! write(6,*) ' component No ',i,' : ',SXvector(i)
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ]
|
||||
implicit none
|
||||
integer :: i,j,ialph
|
||||
|
||||
! form the exponential of the Orbital rotations
|
||||
call get_orbrotmat
|
||||
! form the new orbitals
|
||||
do i=1,ao_num
|
||||
do j=1,mo_num
|
||||
NewOrbs(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do ialph=1,ao_num
|
||||
do i=1,mo_num
|
||||
wrkline(i)=mo_coef(ialph,i)
|
||||
end do
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
NewOrbs(ialph,i)+=Umat(i,j)*wrkline(j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updated orbitals
|
||||
END_DOC
|
||||
integer :: i,j,ialph
|
||||
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, Tpotmat, (mo_num,mo_num) ]
|
||||
&BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
&BEGIN_PROVIDER [real*8, wrkline, (mo_num) ]
|
||||
&BEGIN_PROVIDER [real*8, Tmat, (mo_num,mo_num) ]
|
||||
END_PROVIDER
|
||||
|
||||
subroutine get_orbrotmat
|
||||
implicit none
|
||||
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
||||
real*8 :: sum
|
||||
logical :: converged
|
||||
|
||||
|
||||
! the orbital rotation matrix T
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
Tmat(i,j)=0.D0
|
||||
Umat(i,j)=0.D0
|
||||
Tpotmat(i,j)=0.D0
|
||||
end do
|
||||
Tpotmat(i,i)=1.D0
|
||||
end do
|
||||
|
||||
indx=1
|
||||
do i=1,n_core_orb
|
||||
ii=list_core(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx+=1
|
||||
Tmat(ii,tt)= SXvector(indx)
|
||||
Tmat(tt,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do i=1,n_core_orb
|
||||
ii=list_core(i)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(ii,aa)= SXvector(indx)
|
||||
Tmat(aa,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(tt,aa)= SXvector(indx)
|
||||
Tmat(aa,tt)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
write(6,*) ' the T matrix '
|
||||
do indx=1,nMonoEx
|
||||
i=excit(1,indx)
|
||||
j=excit(2,indx)
|
||||
! if (abs(Tmat(i,j)).gt.1.D0) then
|
||||
! write(6,*) ' setting matrix element ',i,j,' of ',Tmat(i,j),' to ' &
|
||||
! , sign(1.D0,Tmat(i,j))
|
||||
! Tmat(i,j)=sign(1.D0,Tmat(i,j))
|
||||
! Tmat(j,i)=-Tmat(i,j)
|
||||
! end if
|
||||
if (abs(Tmat(i,j)).gt.1.D-9) write(6,9901) i,j,excit_class(indx),Tmat(i,j)
|
||||
9901 format(' ',i4,' -> ',i4,' (',A3,') : ',E14.6)
|
||||
end do
|
||||
|
||||
write(6,*)
|
||||
write(6,*) ' forming the matrix exponential '
|
||||
write(6,*)
|
||||
! form the exponential
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
! add the next term
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
Umat(i,j)+=Tpotmat(i,j)
|
||||
end do
|
||||
end do
|
||||
! next power of T, we multiply Tpotmat with Tmat/iter
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
wrkline(j)=Tpotmat(i,j)/dble(iter)
|
||||
Tpotmat(i,j)=0.D0
|
||||
end do
|
||||
do j=1,mo_num
|
||||
do k=1,mo_num
|
||||
Tpotmat(i,j)+=wrkline(k)*Tmat(k,j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! Convergence test
|
||||
sum=0.D0
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
sum+=abs(Tpotmat(i,j))
|
||||
end do
|
||||
end do
|
||||
write(6,*) ' Iteration No ',iter,' Sum = ',sum
|
||||
if (sum.lt.1.D-6) then
|
||||
converged=.true.
|
||||
end if
|
||||
if (iter.ge.NItExpMax) then
|
||||
stop ' no convergence '
|
||||
end if
|
||||
end do
|
||||
write(6,*)
|
||||
write(6,*) ' Converged ! '
|
||||
write(6,*)
|
||||
|
||||
end subroutine get_orbrotmat
|
||||
|
||||
BEGIN_PROVIDER [integer, NItExpMax]
|
||||
NItExpMax=100
|
||||
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Orbital rotation matrix
|
||||
END_DOC
|
||||
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
||||
logical :: converged
|
||||
|
||||
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
||||
real*8 :: Tmat(mo_num,mo_num)
|
||||
real*8 :: f
|
||||
|
||||
! the orbital rotation matrix T
|
||||
Tmat(:,:)=0.D0
|
||||
indx=1
|
||||
do i=1,n_core_orb
|
||||
ii=list_core(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx+=1
|
||||
Tmat(ii,tt)= SXvector(indx)
|
||||
Tmat(tt,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do i=1,n_core_orb
|
||||
ii=list_core(i)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(ii,aa)= SXvector(indx)
|
||||
Tmat(aa,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(tt,aa)= SXvector(indx)
|
||||
Tmat(aa,tt)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the exponential
|
||||
|
||||
Tpotmat(:,:)=0.D0
|
||||
Umat(:,:) =0.D0
|
||||
do i=1,mo_num
|
||||
Tpotmat(i,i)=1.D0
|
||||
Umat(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
Tmat, size(Tmat,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user