mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 06:53:38 +01:00
opt-g added
This commit is contained in:
parent
a11de84bcd
commit
d889e67146
@ -257,11 +257,11 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
|
||||
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
|
||||
! First term = (x-Ax)**(ax+1)
|
||||
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
ints(m) += integral * coef
|
||||
|
||||
! Second term = Ax * (x-Ax)**(ax)
|
||||
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
ints(m) += A_center(m) * integral * coef
|
||||
|
||||
enddo
|
||||
@ -815,8 +815,6 @@ end function NAI_pol_x_mult_erf_ao_with1s_z
|
||||
|
||||
! ---
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
|
||||
|
||||
BEGIN_DOC
|
||||
|
@ -28,7 +28,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
|
||||
@ -42,7 +42,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
do j = i, ao_num
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = coef_gauss_1_erf_x_2(i_fit)
|
||||
@ -120,7 +120,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
|
||||
@ -134,7 +134,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
||||
do j = i, ao_num
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_x_2(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_x_2(i_fit)
|
||||
@ -213,7 +213,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
||||
!$OMP tmp_x, tmp_y, tmp_z) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
|
||||
@ -230,7 +230,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
||||
tmp_x = 0.d0
|
||||
tmp_y = 0.d0
|
||||
tmp_z = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||
@ -330,7 +330,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
|
||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
|
||||
@ -343,7 +343,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||
|
@ -248,7 +248,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points, ng_fit_jast, &
|
||||
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
|
||||
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
|
||||
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
|
||||
@ -263,7 +263,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
|
||||
do j = i, ao_num
|
||||
|
||||
tmp = 0.d0
|
||||
do i_fit = 1, n_max_fit_slat
|
||||
do i_fit = 1, ng_fit_jast
|
||||
|
||||
expo_fit = expo_gauss_j_mu_x(i_fit)
|
||||
coef_fit = coef_gauss_j_mu_x(i_fit)
|
||||
|
@ -575,17 +575,17 @@ subroutine give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A
|
||||
accu = 0.d0
|
||||
ASSERT (n_pt_in > 1)
|
||||
|
||||
R1x(0) = (P_center(1) - A_center(1))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(1) - C_center(1))* p_new
|
||||
R1x(0) = (P_center(1) - A_center(1))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(1) - C_center(1))* p_new
|
||||
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
|
||||
R1xp(0) = (P_center(1) - B_center(1))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(1) - C_center(1))* p_new
|
||||
R1xp(0) = (P_center(1) - B_center(1))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(1) - C_center(1))* p_new
|
||||
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
|
||||
R2x(0) = p_inv_2
|
||||
R2x(1) = 0.d0
|
||||
R2x(2) = -p_inv_2 * p_new
|
||||
R2x(0) = p_inv_2
|
||||
R2x(1) = 0.d0
|
||||
R2x(2) = -p_inv_2 * p_new
|
||||
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
|
||||
|
||||
do i = 0, n_pt_in
|
||||
@ -609,13 +609,13 @@ subroutine give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A
|
||||
return
|
||||
endif
|
||||
|
||||
R1x(0) = (P_center(2) - A_center(2))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(2) - C_center(2))* p_new
|
||||
R1x(0) = (P_center(2) - A_center(2))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(2) - C_center(2))* p_new
|
||||
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
|
||||
R1xp(0) = (P_center(2) - B_center(2))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(2) - C_center(2))* p_new
|
||||
R1xp(0) = (P_center(2) - B_center(2))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(2) - C_center(2))* p_new
|
||||
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
|
||||
a_y = power_A(2)
|
||||
b_y = power_B(2)
|
||||
@ -628,13 +628,13 @@ subroutine give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A
|
||||
return
|
||||
endif
|
||||
|
||||
R1x(0) = (P_center(3) - A_center(3))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(3) - C_center(3)) * p_new
|
||||
R1x(0) = (P_center(3) - A_center(3))
|
||||
R1x(1) = 0.d0
|
||||
R1x(2) = -(P_center(3) - C_center(3)) * p_new
|
||||
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
|
||||
R1xp(0) = (P_center(3) - B_center(3))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(3) - C_center(3)) * p_new
|
||||
R1xp(0) = (P_center(3) - B_center(3))
|
||||
R1xp(1) = 0.d0
|
||||
R1xp(2) =-(P_center(3) - C_center(3)) * p_new
|
||||
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
|
||||
a_z = power_A(3)
|
||||
b_z = power_B(3)
|
||||
@ -663,16 +663,15 @@ end subroutine give_polynomial_mult_center_one_e_erf_opt
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
|
||||
|
||||
|
||||
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,&
|
||||
power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
|
||||
BEGIN_DOC
|
||||
! Returns the explicit polynomial in terms of the $t$ variable of the
|
||||
! following polynomial:
|
||||
!
|
||||
! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$.
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_pt_in
|
||||
integer,intent(out) :: n_pt_out
|
||||
|
@ -1,3 +1,5 @@
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -14,8 +16,8 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x, (n_max_fit_slat)]
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x, (ng_fit_jast)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x, (ng_fit_jast)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -34,31 +36,71 @@ END_PROVIDER
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: tmp
|
||||
double precision :: expos(n_max_fit_slat), alpha, beta
|
||||
double precision :: expos(ng_fit_jast), alpha, beta
|
||||
|
||||
tmp = -0.5d0 / (mu_erf * sqrt(dacos(-1.d0)))
|
||||
if(ng_fit_jast .eq. 1) then
|
||||
|
||||
alpha = expo_j_xmu(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha, expos)
|
||||
beta = expo_j_xmu(2) * mu_erf * mu_erf
|
||||
coef_gauss_j_mu_x = (/ -0.47947881d0 /)
|
||||
expo_gauss_j_mu_x = (/ 3.4987848d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 2) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ -0.18390742d0, -0.35512656d0 /)
|
||||
expo_gauss_j_mu_x = (/ 31.9279947d0 , 2.11428789d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 3) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ -0.07501725d0, -0.28499012d0, -0.1953932d0 /)
|
||||
expo_gauss_j_mu_x = (/ 206.74058566d0, 1.72974157d0, 11.18735164d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 5) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ -0.01832955d0 , -0.10188952d0 , -0.20710858d0 , -0.18975032d0 , -0.04641657d0 /)
|
||||
expo_gauss_j_mu_x = (/ 4.33116687d+03, 2.61292842d+01, 1.43447161d+00, 4.92767426d+00, 2.10654699d+02 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 6) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ -0.08783664d0 , -0.16088711d0 , -0.18464486d0 , -0.0368509d0 , -0.08130028d0 , -0.0126972d0 /)
|
||||
expo_gauss_j_mu_x = (/ 4.09729729d+01, 7.11620618d+00, 2.03692338d+00, 4.10831731d+02, 1.12480198d+00, 1.00000000d+04 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 20) then
|
||||
|
||||
ASSERT(n_max_fit_slat == 20)
|
||||
|
||||
alpha = expo_j_xmu(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha, expos)
|
||||
beta = expo_j_xmu(2) * mu_erf * mu_erf
|
||||
|
||||
tmp = -1.0d0 / sqrt(dacos(-1.d0))
|
||||
do i = 1, ng_fit_jast
|
||||
expo_gauss_j_mu_x(i) = expos(i) + beta
|
||||
coef_gauss_j_mu_x(i) = tmp * coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' not implemented yet'
|
||||
stop
|
||||
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_j_mu_x(i) = expos(i) + beta
|
||||
coef_gauss_j_mu_x(i) = tmp * coef_fit_slat_gauss(i)
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 / mu_erf
|
||||
do i = 1, ng_fit_jast
|
||||
coef_gauss_j_mu_x(i) = tmp * coef_gauss_j_mu_x(i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x_2, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x_2, (n_max_fit_slat)]
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x_2, (ng_fit_jast)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x_2, (ng_fit_jast)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! J(mu,r12)^2 = 0.25/mu^2 F(r12*mu)^2
|
||||
!
|
||||
! F(x)^2 = 1 /pi * exp(-2 * alpha * x) exp(-2 * beta * x^2)
|
||||
! F(x)^2 = 1/pi * exp(-2 * alpha * x) exp(-2 * beta * x^2)
|
||||
!
|
||||
! The slater function exp(-2 * alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
!
|
||||
@ -69,24 +111,64 @@ END_PROVIDER
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: tmp
|
||||
double precision :: expos(n_max_fit_slat), alpha, beta
|
||||
double precision :: expos(ng_fit_jast), alpha, beta
|
||||
double precision :: alpha_opt, beta_opt
|
||||
|
||||
!alpha_opt = 2.d0 * expo_j_xmu(1)
|
||||
!beta_opt = 2.d0 * expo_j_xmu(2)
|
||||
|
||||
! direct opt
|
||||
alpha_opt = 3.52751759d0
|
||||
beta_opt = 1.26214809d0
|
||||
if(ng_fit_jast .eq. 1) then
|
||||
|
||||
tmp = 0.25d0 / (mu_erf * mu_erf * dacos(-1.d0))
|
||||
coef_gauss_j_mu_x_2 = (/ 0.26699573d0 /)
|
||||
expo_gauss_j_mu_x_2 = (/ 11.71029824d0 /)
|
||||
|
||||
alpha = alpha_opt * mu_erf
|
||||
call expo_fit_slater_gam(alpha, expos)
|
||||
beta = beta_opt * mu_erf * mu_erf
|
||||
elseif(ng_fit_jast .eq. 2) then
|
||||
|
||||
coef_gauss_j_mu_x_2 = (/ 0.11627934d0 , 0.18708824d0 /)
|
||||
expo_gauss_j_mu_x_2 = (/ 102.41386863d0, 6.36239771d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 3) then
|
||||
|
||||
coef_gauss_j_mu_x_2 = (/ 0.04947216d0 , 0.14116238d0, 0.12276501d0 /)
|
||||
expo_gauss_j_mu_x_2 = (/ 635.29701766d0, 4.87696954d0, 33.36745891d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 5) then
|
||||
|
||||
coef_gauss_j_mu_x_2 = (/ 0.01461527d0 , 0.03257147d0 , 0.08831354d0 , 0.11411794d0 , 0.06858783d0 /)
|
||||
expo_gauss_j_mu_x_2 = (/ 8.76554470d+03, 4.90224577d+02, 3.68267125d+00, 1.29663940d+01, 6.58240931d+01 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 6) then
|
||||
|
||||
coef_gauss_j_mu_x_2 = (/ 0.01347632d0 , 0.03929124d0 , 0.06289468d0 , 0.10702493d0 , 0.06999865d0 , 0.02558191d0 /)
|
||||
expo_gauss_j_mu_x_2 = (/ 1.00000000d+04, 1.20900717d+02, 3.20346191d+00, 8.92157196d+00, 3.28119120d+01, 6.49045808d+02 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 20) then
|
||||
|
||||
ASSERT(n_max_fit_slat == 20)
|
||||
|
||||
!alpha_opt = 2.d0 * expo_j_xmu(1)
|
||||
!beta_opt = 2.d0 * expo_j_xmu(2)
|
||||
|
||||
! direct opt
|
||||
alpha_opt = 3.52751759d0
|
||||
beta_opt = 1.26214809d0
|
||||
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_j_mu_x_2(i) = expos(i) + beta
|
||||
alpha = alpha_opt * mu_erf
|
||||
call expo_fit_slater_gam(alpha, expos)
|
||||
beta = beta_opt * mu_erf * mu_erf
|
||||
|
||||
tmp = 1.d0 / dacos(-1.d0)
|
||||
do i = 1, ng_fit_jast
|
||||
expo_gauss_j_mu_x_2(i) = expos(i) + beta
|
||||
coef_gauss_j_mu_x_2(i) = tmp * coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
tmp = 0.25d0 / (mu_erf * mu_erf)
|
||||
do i = 1, ng_fit_jast
|
||||
coef_gauss_j_mu_x_2(i) = tmp * coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
|
||||
|
@ -142,27 +142,72 @@ double precision function fit_1_erf_x(x)
|
||||
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (n_max_fit_slat)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (n_max_fit_slat)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
|
||||
!
|
||||
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
|
||||
!
|
||||
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: expos(n_max_fit_slat),alpha,beta
|
||||
alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha,expos)
|
||||
beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf**2.d0
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_1_erf_x_2(i) = expos(i) + beta
|
||||
coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (ng_fit_jast)]
|
||||
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (ng_fit_jast)]
|
||||
|
||||
BEGIN_DOC
|
||||
! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
|
||||
!
|
||||
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
|
||||
!
|
||||
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: expos(ng_fit_jast), alpha, beta
|
||||
|
||||
if(ng_fit_jast .eq. 1) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ 0.85345277d0 /)
|
||||
expo_gauss_j_mu_x = (/ 6.23519457d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 2) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ 0.31030624d0 , 0.64364964d0 /)
|
||||
expo_gauss_j_mu_x = (/ 55.39184787d0, 3.92151407d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 3) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ 0.33206082d0 , 0.52347449d0, 0.12605012d0 /)
|
||||
expo_gauss_j_mu_x = (/ 19.90272209d0, 3.2671671d0 , 336.47320445d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 5) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ 0.02956716d0, 0.17025555d0, 0.32774114d0, 0.39034764d0, 0.07822781d0 /)
|
||||
expo_gauss_j_mu_x = (/ 6467.28126d0, 46.9071990d0, 9.09617721d0, 2.76883328d0, 360.367093d0 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 6) then
|
||||
|
||||
coef_gauss_j_mu_x = (/ 0.18331042d0 , 0.10971118d0 , 0.29949169d0 , 0.34853132d0 , 0.0394275d0 , 0.01874444d0 /)
|
||||
expo_gauss_j_mu_x = (/ 2.54293498d+01, 1.40317872d+02, 7.14630801d+00, 2.65517675d+00, 1.45142619d+03, 1.00000000d+04 /)
|
||||
|
||||
elseif(ng_fit_jast .eq. 20) then
|
||||
|
||||
ASSERT(n_max_fit_slat == 20)
|
||||
|
||||
alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf
|
||||
call expo_fit_slater_gam(alpha, expos)
|
||||
beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf * mu_erf
|
||||
do i = 1, n_max_fit_slat
|
||||
expo_gauss_1_erf_x_2(i) = expos(i) + beta
|
||||
coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
double precision function fit_1_erf_x_2(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
|
@ -328,7 +328,7 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
|
||||
! track & sort the real eigenvalues
|
||||
|
||||
n_good = 0
|
||||
thr = 1.d-5
|
||||
thr = 1.d-3
|
||||
do i = 1, n
|
||||
print*, 'Re(i) + Im(i)', WR(i), WI(i)
|
||||
if(dabs(WI(i)) .lt. thr) then
|
||||
|
@ -1269,7 +1269,7 @@ end subroutine impose_orthog_svd
|
||||
|
||||
! ---
|
||||
|
||||
subroutine impose_orthog_svd_overlap(n, m, C,overlap)
|
||||
subroutine impose_orthog_svd_overlap(n, m, C, overlap)
|
||||
|
||||
implicit none
|
||||
|
||||
@ -1279,27 +1279,27 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
|
||||
|
||||
integer :: i, j, num_linear_dependencies
|
||||
double precision :: threshold
|
||||
double precision, allocatable :: S(:,:), tmp(:,:),Stmp(:,:)
|
||||
double precision, allocatable :: S(:,:), tmp(:,:), Stmp(:,:)
|
||||
double precision, allocatable :: U(:,:), Vt(:,:), D(:)
|
||||
|
||||
print *, ' apply SVD to orthogonalize vectors'
|
||||
|
||||
! ---
|
||||
|
||||
allocate(S(m,m),Stmp(n,m))
|
||||
|
||||
! S = C.T x overlap x C
|
||||
call dgemm( 'N', 'N', n, m, n, 1.d0 &
|
||||
allocate(S(m,m), Stmp(n,m))
|
||||
call dgemm( 'N', 'N', n, m, n, 1.d0 &
|
||||
, overlap, size(overlap, 1), C, size(C, 1) &
|
||||
, 0.d0, Stmp, size(Stmp, 1) )
|
||||
call dgemm( 'T', 'N', m, m, n, 1.d0 &
|
||||
call dgemm( 'T', 'N', m, m, n, 1.d0 &
|
||||
, C, size(C, 1), Stmp, size(Stmp, 1) &
|
||||
, 0.d0, S, size(S, 1) )
|
||||
deallocate(Stmp)
|
||||
|
||||
! print *, ' eigenvec overlap bef SVD: '
|
||||
! do i = 1, m
|
||||
! write(*, '(1000(F16.10,X))') S(i,:)
|
||||
! enddo
|
||||
print *, ' eigenvec overlap bef SVD: '
|
||||
do i = 1, m
|
||||
write(*, '(1000(F16.10,X))') S(i,:)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
@ -1348,23 +1348,23 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
|
||||
|
||||
! ---
|
||||
|
||||
allocate(S(m,m))
|
||||
|
||||
! S = C.T x C
|
||||
call dgemm( 'T', 'N', m, m, n, 1.d0 &
|
||||
, C, size(C, 1), C, size(C, 1) &
|
||||
! S = C.T x overlap x C
|
||||
allocate(S(m,m), Stmp(n,m))
|
||||
call dgemm( 'N', 'N', n, m, n, 1.d0 &
|
||||
, overlap, size(overlap, 1), C, size(C, 1) &
|
||||
, 0.d0, Stmp, size(Stmp, 1) )
|
||||
call dgemm( 'T', 'N', m, m, n, 1.d0 &
|
||||
, C, size(C, 1), Stmp, size(Stmp, 1) &
|
||||
, 0.d0, S, size(S, 1) )
|
||||
deallocate(Stmp)
|
||||
|
||||
! print *, ' eigenvec overlap aft SVD: '
|
||||
! do i = 1, m
|
||||
! write(*, '(1000(F16.10,X))') S(i,:)
|
||||
! enddo
|
||||
|
||||
print *, ' eigenvec overlap aft SVD: '
|
||||
do i = 1, m
|
||||
write(*, '(1000(F16.10,X))') S(i,:)
|
||||
enddo
|
||||
deallocate(S)
|
||||
|
||||
! ---
|
||||
|
||||
end subroutine impose_orthog_svd
|
||||
end subroutine impose_orthog_svd_overlap
|
||||
|
||||
! ---
|
||||
|
||||
@ -2780,8 +2780,6 @@ end subroutine check_weighted_biorthog_binormalize
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
subroutine impose_weighted_biorthog_svd(n, m, overlap, L, R)
|
||||
|
||||
implicit none
|
||||
@ -2894,8 +2892,7 @@ subroutine impose_weighted_biorthog_svd(n, m, overlap, L, R)
|
||||
enddo
|
||||
deallocate(S)
|
||||
|
||||
! ---
|
||||
|
||||
return
|
||||
end subroutine impose_weighted_biorthog_svd
|
||||
|
||||
! ---
|
||||
|
@ -118,7 +118,6 @@ doc: type of 1-body Jastrow
|
||||
interface: ezfio, provider, ocaml
|
||||
default: 0
|
||||
|
||||
|
||||
[thr_degen_tc]
|
||||
type: Threshold
|
||||
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
|
||||
@ -130,3 +129,10 @@ type: logical
|
||||
doc: If |true|, maximize the overlap between orthogonalized left- and right eigenvectors
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[ng_fit_jast]
|
||||
type: integer
|
||||
doc: nb of Gaussians used to fit Jastrow fcts
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 6
|
||||
|
||||
|
60
src/tc_scf/print_fit_param.irp.f
Normal file
60
src/tc_scf/print_fit_param.irp.f
Normal file
@ -0,0 +1,60 @@
|
||||
program print_fit_param
|
||||
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
! my_n_pt_r_grid = 10 ! small grid for quick debug
|
||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
!call create_guess
|
||||
!call orthonormalize_mos
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
mu_erf = 1.d0
|
||||
touch mu_erf
|
||||
|
||||
print *, ' fit for (1 - erf(x))^2'
|
||||
do i = 1, n_max_fit_slat
|
||||
print*, expo_gauss_1_erf_x_2(i), coef_gauss_1_erf_x_2(i)
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]'
|
||||
do i = 1, n_max_fit_slat
|
||||
print *, expo_gauss_j_mu_x(i), 2.d0 * coef_gauss_j_mu_x(i)
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]^2'
|
||||
do i = 1, n_max_fit_slat
|
||||
print *, expo_gauss_j_mu_x_2(i), 4.d0 * coef_gauss_j_mu_x_2(i)
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)] x [1 - erf(mu * r12)]'
|
||||
do i = 1, n_max_fit_slat
|
||||
print *, expo_gauss_j_mu_1_erf(i), 4.d0 * coef_gauss_j_mu_1_erf(i)
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine main
|
||||
|
||||
! ---
|
||||
|
@ -96,6 +96,7 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
! n_degen = ilast - ifirst +1
|
||||
|
||||
n_degen = list_degen(i,0)
|
||||
if(n_degen .eq. 1) cycle
|
||||
|
||||
allocate(stmp(n_degen,n_degen), smat2(n_degen,n_degen))
|
||||
allocate(mo_r_coef_tmp(ao_num,n_degen), mo_l_coef_tmp(ao_num,n_degen), mo_l_coef_new(ao_num,n_degen))
|
||||
@ -221,41 +222,57 @@ subroutine build_s_matrix(m, n, C1, C2, overlap, smat)
|
||||
double precision, intent(in) :: C1(m,n), C2(m,n), overlap(m,m)
|
||||
double precision, intent(out) :: smat(n,n)
|
||||
integer :: i, j, k, l
|
||||
double precision, allocatable :: S_tmp(:,:)
|
||||
|
||||
smat = 0.D0
|
||||
do i = 1, n
|
||||
do j = 1, n
|
||||
do k = 1, m
|
||||
do l = 1, m
|
||||
smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
smat = 0.d0
|
||||
|
||||
!do i = 1, n
|
||||
! do j = 1, n
|
||||
! do k = 1, m
|
||||
! do l = 1, m
|
||||
! smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
! C1.T x overlap
|
||||
allocate(S_tmp(n,m))
|
||||
call dgemm( 'T', 'N', n, m, m, 1.d0 &
|
||||
, C1, size(C1, 1), overlap, size(overlap, 1) &
|
||||
, 0.d0, S_tmp, size(S_tmp, 1) )
|
||||
! C1.T x overlap x C2
|
||||
call dgemm( 'N', 'N', n, n, m, 1.d0 &
|
||||
, S_tmp, size(S_tmp, 1), C2(1,1), size(C2, 1) &
|
||||
, 0.d0, smat, size(smat, 1) )
|
||||
deallocate(S_tmp)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine orthog_functions(m,n,coef,overlap)
|
||||
implicit none
|
||||
integer, intent(in) :: m,n
|
||||
double precision, intent(in) :: overlap(m,m)
|
||||
double precision, intent(inout) :: coef(m,n)
|
||||
double precision, allocatable :: stmp(:,:)
|
||||
integer :: j
|
||||
allocate(stmp(n,n))
|
||||
call build_s_matrix(m,n,coef,coef,overlap,stmp)
|
||||
subroutine orthog_functions(m, n, coef, overlap)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: m, n
|
||||
double precision, intent(in) :: overlap(m,m)
|
||||
double precision, intent(inout) :: coef(m,n)
|
||||
double precision, allocatable :: stmp(:,:)
|
||||
integer :: j
|
||||
|
||||
allocate(stmp(n,n))
|
||||
call build_s_matrix(m, n, coef, coef, overlap, stmp)
|
||||
! print*,'overlap before'
|
||||
! do j = 1, n
|
||||
! write(*,'(100(F16.10,X))')stmp(:,j)
|
||||
! enddo
|
||||
call impose_orthog_svd_overlap(m, n, coef,overlap)
|
||||
call build_s_matrix(m,n,coef,coef,overlap,stmp)
|
||||
call impose_orthog_svd_overlap(m, n, coef, overlap)
|
||||
call build_s_matrix(m, n, coef, coef, overlap, stmp)
|
||||
do j = 1, n
|
||||
coef(1,:m) *= 1.d0/dsqrt(stmp(j,j))
|
||||
coef(1,:m) *= 1.d0/dsqrt(stmp(j,j))
|
||||
enddo
|
||||
call build_s_matrix(m,n,coef,coef,overlap,stmp)
|
||||
call build_s_matrix(m, n, coef, coef, overlap, stmp)
|
||||
|
||||
!print*,'overlap after'
|
||||
!do j = 1, n
|
||||
|
@ -19,8 +19,8 @@ program tc_scf
|
||||
!call orthonormalize_mos
|
||||
|
||||
call routine_scf()
|
||||
call minimize_tc_orb_angles
|
||||
call print_energy_and_mos
|
||||
call minimize_tc_orb_angles()
|
||||
call print_energy_and_mos()
|
||||
|
||||
|
||||
end
|
||||
|
@ -155,7 +155,7 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_degen_full_list(A,n,thr,list_degen,n_degen_list)
|
||||
subroutine give_degen_full_list(A, n, thr, list_degen, n_degen_list)
|
||||
|
||||
BEGIN_DOC
|
||||
! you enter with an array A(n) and spits out all the elements degenerated up to thr
|
||||
|
Loading…
Reference in New Issue
Block a user