9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-06 16:15:57 +02:00

cycle + vec is slower

This commit is contained in:
AbdAmmar 2022-11-26 00:45:10 +01:00
parent 98f9592b8b
commit a11de84bcd
2 changed files with 437 additions and 583 deletions

View File

@ -1,7 +1,7 @@
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
@ -16,12 +16,13 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num
double precision :: tmp
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
int2_grad1u2_grad2u2_j1b2_v0 = 0.d0
int2_grad1u2_grad2u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
@ -30,7 +31,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num
!$OMP final_grid_points, n_max_fit_slat, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2_v0)
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -48,17 +49,10 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num
! ---
coef = List_all_comb_b3_coef (1)
beta = List_all_comb_b3_expo (1)
B_center(1) = List_all_comb_b3_cent(1,1)
B_center(2) = List_all_comb_b3_cent(2,1)
B_center(3) = List_all_comb_b3_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += -0.25d0 * coef_fit * int_fit
if(dabs(int_fit) .lt. 1d-10) cycle
tmp += -0.25d0 * coef * coef_fit * int_fit
! ---
do i_1s = 2, List_all_comb_b3_size
@ -78,7 +72,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num
enddo
int2_grad1u2_grad2u2_j1b2_v0(j,i,ipoint) = tmp
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -88,19 +82,19 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_v0, (ao_num, ao_num
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2_j1b2_v0(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2_v0(i,j,ipoint)
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_v0', wall1 - wall0
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
@ -114,12 +108,13 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_fi
double precision :: coef, beta, B_center(3), tmp
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
int2_u2_j1b2_v0 = 0.d0
int2_u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
@ -128,7 +123,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_fi
!$OMP final_grid_points, n_max_fit_slat, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2_v0)
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -146,17 +141,10 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_fi
! ---
coef = List_all_comb_b3_coef (1)
beta = List_all_comb_b3_expo (1)
B_center(1) = List_all_comb_b3_cent(1,1)
B_center(2) = List_all_comb_b3_cent(2,1)
B_center(3) = List_all_comb_b3_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += coef_fit * int_fit
if(dabs(int_fit) .lt. 1d-10) cycle
tmp += coef * coef_fit * int_fit
! ---
do i_1s = 2, List_all_comb_b3_size
@ -176,7 +164,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_fi
enddo
int2_u2_j1b2_v0(j,i,ipoint) = tmp
int2_u2_j1b2(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -186,19 +174,19 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_v0, (ao_num, ao_num, n_points_fi
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u2_j1b2_v0(j,i,ipoint) = int2_u2_j1b2_v0(i,j,ipoint)
int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u2_j1b2_v0', wall1 - wall0
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
@ -217,7 +205,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num,
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
int2_u_grad1u_x_j1b2_v0 = 0.d0
int2_u_grad1u_x_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
@ -228,7 +216,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num,
!$OMP final_grid_points, n_max_fit_slat, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2_v0)
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -250,15 +238,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num,
! ---
call NAI_pol_x_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r, int_fit)
print*, ' integralll = ', int_fit(1)
print*, ' integralll = ', int_fit(2)
print*, ' integralll = ', int_fit(3)
tmp_x += coef_fit * int_fit(1)
tmp_y += coef_fit * int_fit(2)
tmp_z += coef_fit * int_fit(3)
if( (dabs(int_fit(1)) + dabs(int_fit(2)) + dabs(int_fit(3))) .lt. 3d-10 ) cycle
! ---
@ -296,9 +278,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num,
enddo
int2_u_grad1u_x_j1b2_v0(1,j,i,ipoint) = tmp_x
int2_u_grad1u_x_j1b2_v0(2,j,i,ipoint) = tmp_y
int2_u_grad1u_x_j1b2_v0(3,j,i,ipoint) = tmp_z
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = tmp_x
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = tmp_y
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = tmp_z
enddo
enddo
enddo
@ -308,15 +290,15 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_v0, (3, ao_num, ao_num,
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_x_j1b2_v0(1,j,i,ipoint) = int2_u_grad1u_x_j1b2_v0(1,i,j,ipoint)
int2_u_grad1u_x_j1b2_v0(2,j,i,ipoint) = int2_u_grad1u_x_j1b2_v0(2,i,j,ipoint)
int2_u_grad1u_x_j1b2_v0(3,j,i,ipoint) = int2_u_grad1u_x_j1b2_v0(3,i,j,ipoint)
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = int2_u_grad1u_x_j1b2(1,i,j,ipoint)
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = int2_u_grad1u_x_j1b2(2,i,j,ipoint)
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = int2_u_grad1u_x_j1b2(3,i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_x_j1b2_v0', wall1 - wall0
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
END_PROVIDER
@ -368,29 +350,10 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
! ---
coef = List_all_comb_b3_coef (1)
beta = List_all_comb_b3_expo (1)
B_center(1) = List_all_comb_b3_cent(1,1)
B_center(2) = List_all_comb_b3_cent(2,1)
B_center(3) = List_all_comb_b3_cent(3,1)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
alpha_1s = beta + expo_fit
alpha_1s_inv = 1.d0 / alpha_1s
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
if(dabs(coef_tmp) .lt. 1d-10) cycle
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
if(dabs(int_fit) .lt. 1d-10) cycle
tmp += coef_tmp * int_fit
tmp += coef_fit * int_fit
! ---

View File

@ -1,562 +1,453 @@
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
integer :: i_mask_grid
double precision :: r(3), expo_fit, coef_fit
double precision :: coef, beta, B_center(3)
double precision :: wall0, wall1
integer, allocatable :: n_mask_grid(:)
double precision, allocatable :: r_mask_grid(:,:)
double precision, allocatable :: int_fit_v(:)
print*, ' providing int2_grad1u2_grad2u2_j1b2'
provide mu_erf final_grid_points_transp j1b_pen
call wall_time(wall0)
int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
!$OMP coef_fit, expo_fit, int_fit_v, n_mask_grid, &
!$OMP i_mask_grid, r_mask_grid) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
!$OMP final_grid_points_transp, n_max_fit_slat, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2, &
!$OMP ao_overlap_abs)
allocate(int_fit_v(n_points_final_grid))
allocate(n_mask_grid(n_points_final_grid))
allocate(r_mask_grid(n_points_final_grid,3))
!$OMP DO SCHEDULE(dynamic)
do i = 1, ao_num
do j = i, ao_num
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
cycle
endif
do i_fit = 1, n_max_fit_slat
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit) * (-0.25d0)
! ---
call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
i_mask_grid = 0 ! dim
n_mask_grid = 0 ! ind
r_mask_grid = 0.d0 ! val
do ipoint = 1, n_points_final_grid
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
i_mask_grid += 1
n_mask_grid(i_mask_grid ) = ipoint
r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
endif
enddo
if(i_mask_grid .eq. 0) cycle
! ---
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) * coef_fit
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
do ipoint = 1, i_mask_grid
int2_grad1u2_grad2u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
enddo
enddo
! ---
enddo
enddo
enddo
!$OMP END DO
deallocate(n_mask_grid)
deallocate(r_mask_grid)
deallocate(int_fit_v)
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
integer :: i_mask_grid
double precision :: r(3), expo_fit, coef_fit
double precision :: coef, beta, B_center(3), tmp
double precision :: wall0, wall1
integer, allocatable :: n_mask_grid(:)
double precision, allocatable :: r_mask_grid(:,:)
double precision, allocatable :: int_fit_v(:)
print*, ' providing int2_u2_j1b2'
provide mu_erf final_grid_points_transp j1b_pen
call wall_time(wall0)
int2_u2_j1b2(:,:,:) = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit_v, &
!$OMP i_mask_grid, n_mask_grid, r_mask_grid ) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points_transp, n_max_fit_slat, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
allocate(n_mask_grid(n_points_final_grid))
allocate(r_mask_grid(n_points_final_grid,3))
allocate(int_fit_v(n_points_final_grid))
!$OMP DO SCHEDULE(dynamic)
do i = 1, ao_num
do j = i, ao_num
do i_fit = 1, n_max_fit_slat
expo_fit = expo_gauss_j_mu_x_2(i_fit)
coef_fit = coef_gauss_j_mu_x_2(i_fit)
! ---
call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
i_mask_grid = 0 ! dim
n_mask_grid = 0 ! ind
r_mask_grid = 0.d0 ! val
do ipoint = 1, n_points_final_grid
int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
i_mask_grid += 1
n_mask_grid(i_mask_grid ) = ipoint
r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
endif
enddo
if(i_mask_grid .eq. 0) cycle
! ---
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) * coef_fit
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
do ipoint = 1, i_mask_grid
int2_u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
enddo
enddo
! ---
enddo
enddo
enddo
!$OMP END DO
deallocate(n_mask_grid)
deallocate(r_mask_grid)
deallocate(int_fit_v)
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
integer :: i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid(3)
double precision :: x, y, z, expo_fit, coef_fit
double precision :: coef, beta, B_center(3)
double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s
double precision :: wall0, wall1
integer, allocatable :: n_mask_grid(:,:)
double precision, allocatable :: r_mask_grid(:,:,:)
double precision, allocatable :: int_fit_v(:,:), dist(:,:), centr_1s(:,:,:)
print*, ' providing int2_u_grad1u_x_j1b2'
provide mu_erf final_grid_points_transp j1b_pen
call wall_time(wall0)
int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, x, y, z, coef, beta, &
!$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, dist, B_center,&
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, &
!$OMP i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid, &
!$OMP n_mask_grid, r_mask_grid) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points_transp, n_max_fit_slat, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
allocate(dist(n_points_final_grid,3))
allocate(centr_1s(n_points_final_grid,3,3))
allocate(n_mask_grid(n_points_final_grid,3))
allocate(r_mask_grid(n_points_final_grid,3,3))
allocate(int_fit_v(n_points_final_grid,3))
!$OMP DO SCHEDULE(dynamic)
do i = 1, ao_num
do j = i, ao_num
do i_fit = 1, n_max_fit_slat
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
! ---
call NAI_pol_x_mult_erf_ao_with1s_v0(i, j, expo_fit, final_grid_points_transp, n_points_final_grid, 1.d+9, final_grid_points_transp, n_points_final_grid, int_fit_v, n_points_final_grid, n_points_final_grid)
i_mask_grid1 = 0 ! dim
i_mask_grid2 = 0 ! dim
i_mask_grid3 = 0 ! dim
n_mask_grid = 0 ! ind
r_mask_grid = 0.d0 ! val
do ipoint = 1, n_points_final_grid
! ---
int2_u_grad1u_x_j1b2(1,j,i,ipoint) += coef_fit * int_fit_v(ipoint,1)
if(dabs(int_fit_v(ipoint,1)) .gt. 1d-10) then
i_mask_grid1 += 1
n_mask_grid(i_mask_grid1, 1) = ipoint
r_mask_grid(i_mask_grid1,1,1) = final_grid_points_transp(ipoint,1)
r_mask_grid(i_mask_grid1,2,1) = final_grid_points_transp(ipoint,2)
r_mask_grid(i_mask_grid1,3,1) = final_grid_points_transp(ipoint,3)
endif
! ---
int2_u_grad1u_x_j1b2(2,j,i,ipoint) += coef_fit * int_fit_v(ipoint,2)
if(dabs(int_fit_v(ipoint,2)) .gt. 1d-10) then
i_mask_grid2 += 1
n_mask_grid(i_mask_grid2, 2) = ipoint
r_mask_grid(i_mask_grid2,1,2) = final_grid_points_transp(ipoint,1)
r_mask_grid(i_mask_grid2,2,2) = final_grid_points_transp(ipoint,2)
r_mask_grid(i_mask_grid2,3,2) = final_grid_points_transp(ipoint,3)
endif
! ---
int2_u_grad1u_x_j1b2(3,j,i,ipoint) += coef_fit * int_fit_v(ipoint,3)
if(dabs(int_fit_v(ipoint,3)) .gt. 1d-10) then
i_mask_grid3 += 1
n_mask_grid(i_mask_grid3, 3) = ipoint
r_mask_grid(i_mask_grid3,1,3) = final_grid_points_transp(ipoint,1)
r_mask_grid(i_mask_grid3,2,3) = final_grid_points_transp(ipoint,2)
r_mask_grid(i_mask_grid3,3,3) = final_grid_points_transp(ipoint,3)
endif
! ---
enddo
if((i_mask_grid1+i_mask_grid2+i_mask_grid3) .eq. 0) cycle
i_mask_grid(1) = i_mask_grid1
i_mask_grid(2) = i_mask_grid2
i_mask_grid(3) = i_mask_grid3
! ---
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) * coef_fit
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
alpha_1s = beta + expo_fit
alpha_1s_inv = 1.d0 / alpha_1s
expo_coef_1s = beta * expo_fit * alpha_1s_inv
do ipoint = 1, i_mask_grid1
x = r_mask_grid(ipoint,1,1)
y = r_mask_grid(ipoint,2,1)
z = r_mask_grid(ipoint,3,1)
centr_1s(ipoint,1,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
centr_1s(ipoint,2,1) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
centr_1s(ipoint,3,1) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
dist(ipoint,1) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
enddo
do ipoint = 1, i_mask_grid2
x = r_mask_grid(ipoint,1,2)
y = r_mask_grid(ipoint,2,2)
z = r_mask_grid(ipoint,3,2)
centr_1s(ipoint,1,2) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
centr_1s(ipoint,2,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
centr_1s(ipoint,3,2) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
dist(ipoint,2) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
enddo
do ipoint = 1, i_mask_grid3
x = r_mask_grid(ipoint,1,3)
y = r_mask_grid(ipoint,2,3)
z = r_mask_grid(ipoint,3,3)
centr_1s(ipoint,1,3) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
centr_1s(ipoint,2,3) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
centr_1s(ipoint,3,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
dist(ipoint,3) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
enddo
call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s, n_points_final_grid, 1.d+9, r_mask_grid, n_points_final_grid, int_fit_v, n_points_final_grid, i_mask_grid)
do ipoint = 1, i_mask_grid1
int2_u_grad1u_x_j1b2(1,j,i,n_mask_grid(ipoint,1)) += coef * dexp(-expo_coef_1s * dist(ipoint,1)) * int_fit_v(ipoint,1)
enddo
do ipoint = 1, i_mask_grid2
int2_u_grad1u_x_j1b2(2,j,i,n_mask_grid(ipoint,2)) += coef * dexp(-expo_coef_1s * dist(ipoint,2)) * int_fit_v(ipoint,2)
enddo
do ipoint = 1, i_mask_grid3
int2_u_grad1u_x_j1b2(3,j,i,n_mask_grid(ipoint,3)) += coef * dexp(-expo_coef_1s * dist(ipoint,3)) * int_fit_v(ipoint,3)
enddo
enddo
! ---
enddo
enddo
enddo
!$OMP END DO
deallocate(dist)
deallocate(centr_1s)
deallocate(n_mask_grid)
deallocate(r_mask_grid)
deallocate(int_fit_v)
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = int2_u_grad1u_x_j1b2(1,i,j,ipoint)
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = int2_u_grad1u_x_j1b2(2,i,j,ipoint)
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = int2_u_grad1u_x_j1b2(3,i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
END_PROVIDER
! ---
!
!BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points_final_grid)]
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu]
! ! -\frac{1}{4} int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! double precision :: r(3), int_fit, expo_fit, coef_fit, coef_tmp
! double precision :: coef, beta, B_center(3), dist
! double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, tmp
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: wall0, wall1
! double precision, external :: NAI_pol_mult_erf_ao_with1s
!
! provide mu_erf final_grid_points j1b_pen
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_grad1u2_grad2u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u_grad1u_j1b2 = 0.d0
! int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
! !$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
! !$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
! !$OMP DO
! do ipoint = 1, n_points_final_grid
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
! !$OMP coef_fit, expo_fit, int_fit_v, n_mask_grid, &
! !$OMP i_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2, &
! !$OMP ao_overlap_abs)
!
! r(1) = final_grid_points(1,ipoint)
! r(2) = final_grid_points(2,ipoint)
! r(3) = final_grid_points(3,ipoint)
! allocate(int_fit_v(n_points_final_grid))
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
!
! do i = 1, ao_num
! do j = i, ao_num
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! tmp = 0.d0
! do i_fit = 1, n_max_fit_slat
! if(ao_overlap_abs(j,i) .lt. 1.d-12) then
! cycle
! endif
!
! expo_fit = expo_gauss_j_mu_1_erf(i_fit)
! coef_fit = coef_gauss_j_mu_1_erf(i_fit)
! do i_fit = 1, n_max_fit_slat
!
! ! ---
! expo_fit = expo_gauss_1_erf_x_2(i_fit)
! coef_fit = coef_gauss_1_erf_x_2(i_fit) * (-0.25d0)
!
! if(dabs(coef_fit) .lt. 1d-10) cycle
! ! ---
!
! int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
! if(dabs(int_fit) .lt. 1d-10) cycle
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! tmp += coef_tmp * int_fit
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! ! ---
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s)
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
! dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
! + (B_center(2) - r(2)) * (B_center(2) - r(2)) &
! + (B_center(3) - r(3)) * (B_center(3) - r(3))
!
! alpha_1s = beta + expo_fit
! alpha_1s_inv = 1.d0 / alpha_1s
! centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
! centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
! centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
!
! expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
! coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
! int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
!
! tmp += coef_tmp * int_fit
! enddo
!
! ! ---
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
!
! enddo
!
! int2_u_grad1u_j1b2(j,i,ipoint) = tmp
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_grad1u2_grad2u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u_grad1u_j1b2(j,i,ipoint) = int2_u_grad1u_j1b2(i,j,ipoint)
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
! print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3), tmp
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
! !$OMP coef_fit, expo_fit, int_fit_v, &
! !$OMP i_mask_grid, n_mask_grid, r_mask_grid ) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
! allocate(int_fit_v(n_points_final_grid))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_x_2(i_fit)
! coef_fit = coef_gauss_j_mu_x_2(i_fit)
!
! ! ---
!
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
!
! do ipoint = 1, n_points_final_grid
! int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
! enddo
!
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
! !
! END_DOC
!
! implicit none
!
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid(3)
! double precision :: x, y, z, expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:,:)
! double precision, allocatable :: r_mask_grid(:,:,:)
! double precision, allocatable :: int_fit_v(:,:), dist(:,:), centr_1s(:,:,:)
!
! print*, ' providing int2_u_grad1u_x_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, x, y, z, coef, beta, &
! !$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, dist, B_center,&
! !$OMP alpha_1s_inv, centr_1s, expo_coef_1s, &
! !$OMP i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid, &
! !$OMP n_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!
! allocate(dist(n_points_final_grid,3))
! allocate(centr_1s(n_points_final_grid,3,3))
! allocate(n_mask_grid(n_points_final_grid,3))
! allocate(r_mask_grid(n_points_final_grid,3,3))
! allocate(int_fit_v(n_points_final_grid,3))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_1_erf(i_fit)
! coef_fit = coef_gauss_j_mu_1_erf(i_fit)
!
! ! ---
!
! call NAI_pol_x_mult_erf_ao_with1s_v0(i, j, expo_fit, final_grid_points_transp, n_points_final_grid, 1.d+9, final_grid_points_transp, n_points_final_grid, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid1 = 0 ! dim
! i_mask_grid2 = 0 ! dim
! i_mask_grid3 = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! ! ---
!
! int2_u_grad1u_x_j1b2(1,j,i,ipoint) += coef_fit * int_fit_v(ipoint,1)
!
! if(dabs(int_fit_v(ipoint,1)) .gt. 1d-10) then
! i_mask_grid1 += 1
! n_mask_grid(i_mask_grid1, 1) = ipoint
! r_mask_grid(i_mask_grid1,1,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid1,2,1) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid1,3,1) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(2,j,i,ipoint) += coef_fit * int_fit_v(ipoint,2)
!
! if(dabs(int_fit_v(ipoint,2)) .gt. 1d-10) then
! i_mask_grid2 += 1
! n_mask_grid(i_mask_grid2, 2) = ipoint
! r_mask_grid(i_mask_grid2,1,2) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid2,2,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid2,3,2) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(3,j,i,ipoint) += coef_fit * int_fit_v(ipoint,3)
!
! if(dabs(int_fit_v(ipoint,3)) .gt. 1d-10) then
! i_mask_grid3 += 1
! n_mask_grid(i_mask_grid3, 3) = ipoint
! r_mask_grid(i_mask_grid3,1,3) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid3,2,3) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid3,3,3) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! enddo
!
! if((i_mask_grid1+i_mask_grid2+i_mask_grid3) .eq. 0) cycle
!
! i_mask_grid(1) = i_mask_grid1
! i_mask_grid(2) = i_mask_grid2
! i_mask_grid(3) = i_mask_grid3
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! alpha_1s = beta + expo_fit
! alpha_1s_inv = 1.d0 / alpha_1s
! expo_coef_1s = beta * expo_fit * alpha_1s_inv
!
! do ipoint = 1, i_mask_grid1
!
! x = r_mask_grid(ipoint,1,1)
! y = r_mask_grid(ipoint,2,1)
! z = r_mask_grid(ipoint,3,1)
!
! centr_1s(ipoint,1,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,1) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,1) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,1) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid2
!
! x = r_mask_grid(ipoint,1,2)
! y = r_mask_grid(ipoint,2,2)
! z = r_mask_grid(ipoint,3,2)
!
! centr_1s(ipoint,1,2) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,2) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,2) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid3
!
! x = r_mask_grid(ipoint,1,3)
! y = r_mask_grid(ipoint,2,3)
! z = r_mask_grid(ipoint,3,3)
!
! centr_1s(ipoint,1,3) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,3) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,3) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s, n_points_final_grid, 1.d+9, r_mask_grid, n_points_final_grid, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid1
! int2_u_grad1u_x_j1b2(1,j,i,n_mask_grid(ipoint,1)) += coef * dexp(-expo_coef_1s * dist(ipoint,1)) * int_fit_v(ipoint,1)
! enddo
!
! do ipoint = 1, i_mask_grid2
! int2_u_grad1u_x_j1b2(2,j,i,n_mask_grid(ipoint,2)) += coef * dexp(-expo_coef_1s * dist(ipoint,2)) * int_fit_v(ipoint,2)
! enddo
!
! do ipoint = 1, i_mask_grid3
! int2_u_grad1u_x_j1b2(3,j,i,n_mask_grid(ipoint,3)) += coef * dexp(-expo_coef_1s * dist(ipoint,3)) * int_fit_v(ipoint,3)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(dist)
! deallocate(centr_1s)
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u_grad1u_x_j1b2(1,j,i,ipoint) = int2_u_grad1u_x_j1b2(1,i,j,ipoint)
! int2_u_grad1u_x_j1b2(2,j,i,ipoint) = int2_u_grad1u_x_j1b2(2,i,j,ipoint)
! int2_u_grad1u_x_j1b2(3,j,i,ipoint) = int2_u_grad1u_x_j1b2(3,i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
!
!END_PROVIDER
!