9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-04 17:38:38 +01:00

Merge pull request #302 from AbdAmmar/dev-stable-tc-scf
Some checks failed
continuous-integration/drone/push Build is failing

Dev stable tc scf
This commit is contained in:
AbdAmmar 2023-07-03 01:33:53 +02:00 committed by GitHub
commit 67a83f767b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
53 changed files with 1184 additions and 728 deletions

View File

@ -212,9 +212,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
! Computes the following integral : ! Computes the following integral :
! !
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! !
END_DOC END_DOC
@ -279,9 +277,7 @@ subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_
! Computes the following integral : ! Computes the following integral :
! !
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! !
END_DOC END_DOC
@ -1111,3 +1107,141 @@ end
! --- ! ---
subroutine NAI_pol_x2_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
power_A2 = power_Ai
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao_with1s
! ---
subroutine NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
power_A2 = power_A
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A , power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao
! ---

View File

@ -128,6 +128,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
do i_1s = 2, List_all_comb_b3_size do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s) beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s) B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s) B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -222,6 +223,7 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
do i_1s = 2, List_all_comb_b3_size do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s) beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s) B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s) B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -322,6 +324,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
do i_1s = 2, List_all_comb_b3_size do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s) beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s) B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s) B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -436,6 +439,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
do i_1s = 2, List_all_comb_b3_size do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s) coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s) beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s) B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s) B_center(2) = List_all_comb_b3_cent(2,i_1s)

View File

@ -60,6 +60,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
do i_1s = 2, List_all_comb_b2_size do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s) coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s) beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s) B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s) B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -154,6 +155,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
do i_1s = 2, List_all_comb_b2_size do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s) coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s) beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s) B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s) B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -195,8 +197,7 @@ END_PROVIDER
! --- ! ---
! TODO analytically BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC BEGIN_DOC
! !
@ -213,12 +214,14 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
double precision, external :: overlap_gauss_r12_ao_with1s double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b ...' print*, ' providing v_ij_u_cst_mu_j1b_fit ...'
call wall_time(wall0) call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen provide mu_erf final_grid_points j1b_pen
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
v_ij_u_cst_mu_j1b = 0.d0 v_ij_u_cst_mu_j1b_fit = 0.d0
!$OMP PARALLEL DEFAULT (NONE) & !$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, & !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
@ -227,9 +230,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
!$OMP final_grid_points, ng_fit_jast, & !$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, & !$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, & !$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b) !$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_fit)
!$OMP DO !$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint) r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint) r(2) = final_grid_points(2,ipoint)
@ -240,7 +242,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
tmp = 0.d0 tmp = 0.d0
do i_fit = 1, ng_fit_jast do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit) expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit) coef_fit = coef_gauss_j_mu_x(i_fit)
@ -253,7 +254,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
B_center(3) = List_all_comb_b2_cent(3,1) B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j) int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
tmp += coef * coef_fit * int_fit tmp += coef * coef_fit * int_fit
@ -262,6 +262,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
do i_1s = 2, List_all_comb_b2_size do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s) coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s) beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s) B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s) B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -276,7 +277,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
enddo enddo
v_ij_u_cst_mu_j1b(j,i,ipoint) = tmp v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = tmp
enddo enddo
enddo enddo
enddo enddo
@ -286,13 +287,149 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do i = 2, ao_num do i = 2, ao_num
do j = 1, i-1 do j = 1, i-1
v_ij_u_cst_mu_j1b(j,i,ipoint) = v_ij_u_cst_mu_j1b(i,j,ipoint) v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
enddo enddo
enddo enddo
enddo enddo
call wall_time(wall1) call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b', wall1 - wall0 print*, ' wall time for v_ij_u_cst_mu_j1b_fit', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
! TODO
! one subroutine for all integrals
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_c1, int_e1, int_o
double precision :: int_c2(3), int_e2(3)
double precision :: int_c3(3), int_e3(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c1, int_e1, int_o, int_c2, &
!$OMP int_e2, int_c3, int_e3) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an', wall1 - wall0
END_PROVIDER END_PROVIDER

View File

@ -36,16 +36,25 @@ END_PROVIDER
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ] BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
implicit none
BEGIN_DOC BEGIN_DOC
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater ! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
! !
! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2) ! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2)
! !
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2) ! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
END_DOC END_DOC
expo_j_xmu(1) = 1.7477d0
expo_j_xmu(2) = 0.668662d0 implicit none
!expo_j_xmu(1) = 1.7477d0
!expo_j_xmu(2) = 0.668662d0
!expo_j_xmu(1) = 1.74766377595541d0
!expo_j_xmu(2) = 0.668719925486403d0
expo_j_xmu(1) = 1.74770446934522d0
expo_j_xmu(2) = 0.668659706559979d0
END_PROVIDER END_PROVIDER

View File

@ -9,10 +9,9 @@ program bi_ort_ints
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
!my_n_pt_r_grid = 10 PROVIDE tc_grid1_a tc_grid1_r
!my_n_pt_a_grid = 14 my_n_pt_r_grid = tc_grid1_r
my_n_pt_r_grid = 30 my_n_pt_a_grid = tc_grid1_a
my_n_pt_a_grid = 50
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_3e ! call test_3e

View File

@ -140,8 +140,6 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo enddo
enddo enddo
FREE int2_grad1_u12_ao
endif endif
call wall_time(wall1) call wall_time(wall1)
@ -225,6 +223,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3,
implicit none implicit none
integer :: i, j, ipoint integer :: i, j, ipoint
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do i = 1, ao_num do i = 1, ao_num
do j = 1, ao_num do j = 1, ao_num

View File

@ -17,6 +17,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
integer :: i, j, m integer :: i, j, m
double precision :: integral, wall1, wall0 double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_direct_bi_ort = 0.d0 three_e_3_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_direct_bi_ort ...' print *, ' Providing the three_e_3_idx_direct_bi_ort ...'
call wall_time(wall0) call wall_time(wall0)
@ -125,6 +127,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num
integer :: i, j, m integer :: i, j, m
double precision :: integral, wall1, wall0 double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_cycle_2_bi_ort = 0.d0 three_e_3_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...' print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...'
call wall_time(wall0) call wall_time(wall0)
@ -179,6 +183,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num,
integer :: i, j, m integer :: i, j, m
double precision :: integral, wall1, wall0 double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch23_bi_ort = 0.d0 three_e_3_idx_exch23_bi_ort = 0.d0
print*,'Providing the three_e_3_idx_exch23_bi_ort ...' print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
call wall_time(wall0) call wall_time(wall0)
@ -233,6 +239,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num,
integer :: i,j,m integer :: i,j,m
double precision :: integral, wall1, wall0 double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch13_bi_ort = 0.d0 three_e_3_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch13_bi_ort ...' print *, ' Providing the three_e_3_idx_exch13_bi_ort ...'
call wall_time(wall0) call wall_time(wall0)
@ -287,6 +295,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num,
integer :: i, j, m integer :: i, j, m
double precision :: integral, wall1, wall0 double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch12_bi_ort = 0.d0 three_e_3_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch12_bi_ort ...' print *, ' Providing the three_e_3_idx_exch12_bi_ort ...'
call wall_time(wall0) call wall_time(wall0)

View File

@ -261,51 +261,55 @@ END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num) ] BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num) ] &BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num) ] &BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num)]
implicit none
BEGIN_DOC BEGIN_DOC
! mo_bi_ortho_tc_two_e_jj(i,j) = J_ij = <ji|W-K|ji> ! mo_bi_ortho_tc_two_e_jj(i,j) = J_ij = <ji|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_exchange(i,j) = K_ij = <ij|W-K|ji> ! mo_bi_ortho_tc_two_e_jj_exchange(i,j) = K_ij = <ij|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_anti(i,j) = J_ij - K_ij ! mo_bi_ortho_tc_two_e_jj_anti(i,j) = J_ij - K_ij
END_DOC END_DOC
integer :: i,j implicit none
double precision :: get_two_e_integral integer :: i, j
mo_bi_ortho_tc_two_e_jj = 0.d0 mo_bi_ortho_tc_two_e_jj = 0.d0
mo_bi_ortho_tc_two_e_jj_exchange = 0.d0 mo_bi_ortho_tc_two_e_jj_exchange = 0.d0
do i=1,mo_num do i = 1, mo_num
do j=1,mo_num do j = 1, mo_num
mo_bi_ortho_tc_two_e_jj(i,j) = mo_bi_ortho_tc_two_e(j,i,j,i) mo_bi_ortho_tc_two_e_jj(i,j) = mo_bi_ortho_tc_two_e(j,i,j,i)
mo_bi_ortho_tc_two_e_jj_exchange(i,j) = mo_bi_ortho_tc_two_e(i,j,j,i) mo_bi_ortho_tc_two_e_jj_exchange(i,j) = mo_bi_ortho_tc_two_e(i,j,j,i)
mo_bi_ortho_tc_two_e_jj_anti(i,j) = mo_bi_ortho_tc_two_e_jj(i,j) - mo_bi_ortho_tc_two_e_jj_exchange(i,j) mo_bi_ortho_tc_two_e_jj_anti(i,j) = mo_bi_ortho_tc_two_e_jj(i,j) - mo_bi_ortho_tc_two_e_jj_exchange(i,j)
enddo enddo
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals, (mo_num,mo_num, mo_num)] ! ---
&BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals,(mo_num,mo_num, mo_num)]
implicit none
BEGIN_DOC
! tc_2e_3idx_coulomb_integrals(j,k,i) = <jk|ji>
!
! tc_2e_3idx_exchange_integrals(j,k,i) = <kj|ji>
END_DOC
integer :: i,j,k,l
double precision :: get_two_e_integral
double precision :: integral
do i = 1, mo_num BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals , (mo_num,mo_num,mo_num)]
do k = 1, mo_num &BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals, (mo_num,mo_num,mo_num)]
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals(j, k,i) = mo_bi_ortho_tc_two_e(j ,k ,j ,i ) BEGIN_DOC
tc_2e_3idx_exchange_integrals(j,k,i) = mo_bi_ortho_tc_two_e(k ,j ,j ,i ) ! tc_2e_3idx_coulomb_integrals (j,k,i) = <jk|ji>
enddo ! tc_2e_3idx_exchange_integrals(j,k,i) = <kj|ji>
END_DOC
implicit none
integer :: i, j, k
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals(j, k,i) = mo_bi_ortho_tc_two_e(j ,k ,j ,i )
tc_2e_3idx_exchange_integrals(j,k,i) = mo_bi_ortho_tc_two_e(k ,j ,j ,i )
enddo
enddo
enddo enddo
enddo
END_PROVIDER END_PROVIDER
! ---

View File

@ -1,47 +1,54 @@
! ---
subroutine run_stochastic_cipsi subroutine run_stochastic_cipsi
BEGIN_DOC
! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC
use selection_types use selection_types
implicit none implicit none
BEGIN_DOC integer :: i, j, k, ndet
! Selected Full Configuration Interaction with Stochastic selection and PT2. integer :: to_select
END_DOC logical :: print_pt2
integer :: i,j,k,ndet logical :: has
double precision, allocatable :: zeros(:) type(pt2_type) :: pt2_data, pt2_data_err
integer :: to_select double precision :: rss
type(pt2_type) :: pt2_data, pt2_data_err double precision :: correlation_energy_ratio, E_denom, E_tc, norm
logical, external :: qp_stop double precision :: hf_energy_ref
logical :: print_pt2 double precision :: relative_error
double precision, allocatable :: ept2(:), pt1(:), extrap_energy(:)
double precision, allocatable :: zeros(:)
double precision :: rss logical, external :: qp_stop
double precision, external :: memory_of_double double precision, external :: memory_of_double
double precision :: correlation_energy_ratio,E_denom,E_tc,norm
double precision, allocatable :: ept2(:), pt1(:),extrap_energy(:) PROVIDE mo_l_coef mo_r_coef
PROVIDE H_apply_buffer_allocated distributed_davidson PROVIDE H_apply_buffer_allocated distributed_davidson
print*,'Diagonal elements of the Fock matrix ' print*, ' Diagonal elements of the Fock matrix '
do i = 1, mo_num do i = 1, mo_num
write(*,*)i,Fock_matrix_tc_mo_tot(i,i) write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo enddo
N_iter = 1 N_iter = 1
threshold_generators = 1.d0 threshold_generators = 1.d0
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
rss = memory_of_double(N_states)*4.d0 rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here) call check_mem(rss, irp_here)
allocate (zeros(N_states)) allocate(zeros(N_states))
call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
double precision :: hf_energy_ref relative_error = PT2_relative_error
logical :: has
double precision :: relative_error
relative_error=PT2_relative_error zeros = 0.d0
pt2_data % pt2 = -huge(1.e0)
zeros = 0.d0 pt2_data % rpt2 = -huge(1.e0)
pt2_data % pt2 = -huge(1.e0) pt2_data % overlap = 0.d0
pt2_data % rpt2 = -huge(1.e0)
pt2_data % overlap= 0.d0
pt2_data % variance = huge(1.e0) pt2_data % variance = huge(1.e0)
!!!! WARNING !!!! SEEMS TO BE PROBLEM WTH make_s2_eigenfunction !!!! THE DETERMINANTS CAN APPEAR TWICE IN THE WFT DURING SELECTION !!!! WARNING !!!! SEEMS TO BE PROBLEM WTH make_s2_eigenfunction !!!! THE DETERMINANTS CAN APPEAR TWICE IN THE WFT DURING SELECTION
@ -49,7 +56,7 @@ subroutine run_stochastic_cipsi
! call make_s2_eigenfunction ! call make_s2_eigenfunction
! endif ! endif
print_pt2 = .False. print_pt2 = .False.
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2) call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! call routine_save_right ! call routine_save_right
@ -74,14 +81,12 @@ subroutine run_stochastic_cipsi
! soft_touch thresh_it_dav ! soft_touch thresh_it_dav
print_pt2 = .True. print_pt2 = .True.
do while ( & do while( (N_det < N_det_max) .and. &
(N_det < N_det_max) .and. & (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max))
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) &
)
print*,'maxval(abs(pt2_data % pt2(1:N_states)))',maxval(abs(pt2_data % pt2(1:N_states)))
print*,pt2_max
write(*,'(A)') '--------------------------------------------------------------------------------'
print*,'maxval(abs(pt2_data % pt2(1:N_states)))',maxval(abs(pt2_data % pt2(1:N_states)))
print*,pt2_max
write(*,'(A)') '--------------------------------------------------------------------------------'
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select) to_select = max(N_states_diag, to_select)
@ -94,8 +99,7 @@ subroutine run_stochastic_cipsi
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
! stop ! stop
call print_summary(psi_energy_with_nucl_rep, & call print_summary(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
pt2_data, pt2_data_err, N_det,N_configuration,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2) call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
@ -109,13 +113,13 @@ subroutine run_stochastic_cipsi
! Add selected determinants ! Add selected determinants
call copy_H_apply_buffer_to_wf_tc() call copy_H_apply_buffer_to_wf_tc()
PROVIDE psi_l_coef_bi_ortho psi_r_coef_bi_ortho PROVIDE psi_l_coef_bi_ortho psi_r_coef_bi_ortho
PROVIDE psi_det PROVIDE psi_det
PROVIDE psi_det_sorted_tc PROVIDE psi_det_sorted_tc
ept2(N_iter-1) = E_tc + nuclear_repulsion + (pt2_data % pt2(1))/norm ept2(N_iter-1) = E_tc + nuclear_repulsion + (pt2_data % pt2(1))/norm
pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1)) pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1))
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2) call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! stop ! stop
if (qp_stop()) exit if (qp_stop()) exit
enddo enddo

View File

@ -1,21 +1,29 @@
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2) ! ---
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types use selection_types
implicit none implicit none
integer, intent(inout) :: ndet ! number of determinants from before integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function double precision, intent(inout) :: E_tc, norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2 logical, intent(in) :: print_pt2
BEGIN_DOC integer :: i, j
! Replace the coefficients of the CI states by the coefficients of the double precision :: pt2_tmp, pt1_norm, rpt2_tmp, abs_pt2
! eigenstates of the CI matrix
END_DOC PROVIDE mo_l_coef mo_r_coef
integer :: i,j
double precision :: pt2_tmp,pt1_norm,rpt2_tmp,abs_pt2 pt2_tmp = pt2_data % pt2(1)
pt2_tmp = pt2_data % pt2(1) abs_pt2 = pt2_data % variance(1)
abs_pt2 = pt2_data % variance(1) pt1_norm = pt2_data % overlap(1,1)
pt1_norm = pt2_data % overlap(1,1) rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
print*,'*****' print*,'*****'
print*,'New wave function information' print*,'New wave function information'
print*,'N_det tc = ',N_det print*,'N_det tc = ',N_det
@ -23,53 +31,61 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1) print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1) print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****' print*,'*****'
if(print_pt2)then
print*,'*****' if(print_pt2) then
print*,'previous wave function info' print*,'*****'
print*,'norm(before) = ',norm print*,'previous wave function info'
print*,'E(before) = ',E_tc print*,'norm(before) = ',norm
print*,'PT1 norm = ',dsqrt(pt1_norm) print*,'E(before) = ',E_tc
print*,'PT2 = ',pt2_tmp print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'rPT2 = ',rpt2_tmp print*,'PT2 = ',pt2_tmp
print*,'|PT2| = ',abs_pt2 print*,'rPT2 = ',rpt2_tmp
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0 print*,'|PT2| = ',abs_pt2
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0 print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2 print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
print*,'*****' write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
endif endif
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states) psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1) E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth norm = norm_ground_left_right_bi_orth
ndet = N_det ndet = N_det
do j=1,N_states do j = 1, N_states
do i=1,N_det do i = 1, N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j) psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j) psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j)) psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j))
enddo enddo
enddo enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho psi_coef psi_energy psi_s2 SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho psi_coef psi_energy psi_s2
call save_tc_bi_ortho_wavefunction call save_tc_bi_ortho_wavefunction()
end end
subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2) ! ---
subroutine print_CI_dressed(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types use selection_types
implicit none implicit none
integer, intent(inout) :: ndet ! number of determinants from before integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2 logical, intent(in) :: print_pt2
BEGIN_DOC integer :: i, j
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
print*,'*****' print*,'*****'
print*,'New wave function information' print*,'New wave function information'
print*,'N_det tc = ',N_det print*,'N_det tc = ',N_det
@ -77,22 +93,25 @@ subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1) print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1) print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****' print*,'*****'
if(print_pt2)then
print*,'*****' if(print_pt2) then
print*,'previous wave function info' print*,'*****'
print*,'norm(before) = ',norm print*,'previous wave function info'
print*,'E(before) = ',E_tc print*,'norm(before) = ',norm
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1)) print*,'E(before) = ',E_tc
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'PT2 = ',pt2_data % pt2(1) print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1)) print*,'PT2 = ',pt2_data % pt2(1)
print*,'*****' print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
endif endif
E_tc = eigval_right_tc_bi_orth(1) E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth norm = norm_ground_left_right_bi_orth
ndet = N_det ndet = N_det
do j=1,N_states
do i=1,N_det do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = reigvec_tc_bi_orth(i,j) psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
enddo enddo
enddo enddo
@ -100,3 +119,5 @@ subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
end end
! ---

View File

@ -1,5 +1,8 @@
program fci
implicit none ! ---
program fci_tc_bi
BEGIN_DOC BEGIN_DOC
! Selected Full Configuration Interaction with stochastic selection ! Selected Full Configuration Interaction with stochastic selection
! and PT2. ! and PT2.
@ -36,21 +39,27 @@ program fci
! !
END_DOC END_DOC
implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
pruning = -1.d0 pruning = -1.d0
touch pruning touch pruning
! pt2_relative_error = 0.01d0 ! pt2_relative_error = 0.01d0
! touch pt2_relative_error ! touch pt2_relative_error
call run_cipsi_tc
call run_cipsi_tc()
end end
! ---
subroutine run_cipsi_tc subroutine run_cipsi_tc()
implicit none implicit none
@ -58,20 +67,21 @@ subroutine run_cipsi_tc
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
if(elec_alpha_num+elec_beta_num .ge. 3) then if((elec_alpha_num+elec_beta_num) .ge. 3) then
if(three_body_h_tc)then if(three_body_h_tc) then
call provide_all_three_ints_bi_ortho() call provide_all_three_ints_bi_ortho()
endif endif
endif endif
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp FREE int2_grad1_u12_ao int2_grad1_u12_ao_t int2_grad1_u12_ao_transp
FREE int2_grad1_u12_bimo_transp
write(json_unit,json_array_open_fmt) 'fci_tc' write(json_unit,json_array_open_fmt) 'fci_tc'
if (do_pt2) then if(do_pt2) then
call run_stochastic_cipsi call run_stochastic_cipsi()
else else
call run_cipsi call run_cipsi()
endif endif
write(json_unit,json_dict_uopen_fmt) write(json_unit,json_dict_uopen_fmt)
@ -83,13 +93,14 @@ subroutine run_cipsi_tc
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
if(elec_alpha_num+elec_beta_num.ge.3)then if((elec_alpha_num+elec_beta_num) .ge. 3) then
if(three_body_h_tc)then if(three_body_h_tc) then
call provide_all_three_ints_bi_ortho call provide_all_three_ints_bi_ortho()
endif endif
endif endif
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp FREE int2_grad1_u12_ao int2_grad1_u12_ao_t int2_grad1_u12_ao_transp
FREE int2_grad1_u12_bimo_transp
call run_slave_cipsi call run_slave_cipsi

View File

@ -1,31 +1,42 @@
! ---
program tc_pt2_prog program tc_pt2_prog
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
pruning = -1.d0 pruning = -1.d0
touch pruning touch pruning
! pt2_relative_error = 0.01d0 ! pt2_relative_error = 0.01d0
! touch pt2_relative_error ! touch pt2_relative_error
call run_pt2_tc call run_pt2_tc()
end end
! ---
subroutine run_pt2_tc subroutine run_pt2_tc()
implicit none implicit none
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
if(elec_alpha_num+elec_beta_num.ge.3)then
if(elec_alpha_num+elec_beta_num.ge.3) then
if(three_body_h_tc)then if(three_body_h_tc)then
call provide_all_three_ints_bi_ortho call provide_all_three_ints_bi_ortho()
endif endif
endif endif
! ---
call tc_pt2
call tc_pt2()
end end
! ---

View File

@ -6,13 +6,9 @@ program debug_fit
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = 30 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_a_grid = tc_grid1_a
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170
!my_n_pt_r_grid = 150
!my_n_pt_a_grid = 194
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen PROVIDE mu_erf j1b_pen

View File

@ -6,13 +6,9 @@ program debug_integ_jmu_modif
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
!my_n_pt_r_grid = 30 my_n_pt_r_grid = tc_grid1_r
!my_n_pt_a_grid = 50 my_n_pt_a_grid = tc_grid1_a
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170
my_n_pt_r_grid = 150
my_n_pt_a_grid = 194
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen PROVIDE mu_erf j1b_pen
@ -48,22 +44,21 @@ subroutine test_v_ij_u_cst_mu_j1b()
print*, ' test_v_ij_u_cst_mu_j1b ...' print*, ' test_v_ij_u_cst_mu_j1b ...'
PROVIDE v_ij_u_cst_mu_j1b PROVIDE v_ij_u_cst_mu_j1b_fit
eps_ij = 1d-3 eps_ij = 1d-3
acc_tot = 0.d0 acc_tot = 0.d0
normalz = 0.d0 normalz = 0.d0
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do j = 1, ao_num do j = 1, ao_num
do i = 1, ao_num do i = 1, ao_num
i_exc = v_ij_u_cst_mu_j1b(i,j,ipoint) i_exc = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
i_num = num_v_ij_u_cst_mu_j1b(i,j,ipoint) i_num = num_v_ij_u_cst_mu_j1b (i,j,ipoint)
acc_ij = dabs(i_exc - i_num) acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then if(acc_ij .gt. eps_ij) then
print *, ' problem in v_ij_u_cst_mu_j1b on', i, j, ipoint print *, ' problem in v_ij_u_cst_mu_j1b_fit on', i, j, ipoint
print *, ' analyt integ = ', i_exc print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij print *, ' diff = ', acc_ij

View File

@ -1,68 +1,3 @@
! ---
!BEGIN_PROVIDER [ double precision, int1_grad2_u12_ao, (3, ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = \int dr1 [-1 * \grad_r2 J(r1,r2)] \phi_i(r1) \phi_j(r1)
! !
! ! where r1 = r(ipoint)
! !
! ! if J(r1,r2) = u12:
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = +0.5 x \int dr1 [-(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r1) \phi_j(r1)
! ! = -0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,:) ]
! ! = -int2_grad1_u12_ao(i,j,ipoint,:)
! !
! ! if J(r1,r2) = u12 x v1 x v2
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = v2 x [ 0.5 x \int dr1 [-(r1 - r2) (erf(mu * r12)-1)r_12] v1 \phi_i(r1) \phi_j(r1) ]
! ! - \grad_2 v2 x [ \int dr1 u12 v1 \phi_i(r1) \phi_j(r1) ]
! ! = -0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:)
! ! + 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:)
! ! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint)
! !
! !
! END_DOC
!
! implicit none
! integer :: ipoint, i, j
! double precision :: x, y, z, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
!
! PROVIDE j1b_type
!
! if(j1b_type .eq. 3) then
!
! do ipoint = 1, n_points_final_grid
! x = final_grid_points(1,ipoint)
! y = final_grid_points(2,ipoint)
! z = final_grid_points(3,ipoint)
!
! tmp0 = 0.5d0 * v_1b(ipoint)
! tmp_x = v_1b_grad(1,ipoint)
! tmp_y = v_1b_grad(2,ipoint)
! tmp_z = v_1b_grad(3,ipoint)
!
! do j = 1, ao_num
! do i = 1, ao_num
!
! tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
! tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint)
!
! int1_grad2_u12_ao(1,i,j,ipoint) = -tmp1 * x + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
! int1_grad2_u12_ao(2,i,j,ipoint) = -tmp1 * y + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
! int1_grad2_u12_ao(3,i,j,ipoint) = -tmp1 * z + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
! enddo
! enddo
! enddo
!
! else
!
! int1_grad2_u12_ao = -1.d0 * int2_grad1_u12_ao
!
! endif
!
!END_PROVIDER
! --- ! ---
@ -98,22 +33,14 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_loop, (ao_num, ao_num, ao_
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint) weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
do i = 1, ao_num do i = 1, ao_num
!ao_i_r = weight1 * aos_in_r_array_transp (ipoint,i)
!ao_i_dx = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,1)
!ao_i_dy = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,2)
!ao_i_dz = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,3)
ao_i_r = weight1 * aos_in_r_array (i,ipoint) ao_i_r = weight1 * aos_in_r_array (i,ipoint)
ao_i_dx = weight1 * aos_grad_in_r_array(i,ipoint,1) ao_i_dx = weight1 * aos_grad_in_r_array(i,ipoint,1)
ao_i_dy = weight1 * aos_grad_in_r_array(i,ipoint,2) ao_i_dy = weight1 * aos_grad_in_r_array(i,ipoint,2)
ao_i_dz = weight1 * aos_grad_in_r_array(i,ipoint,3) ao_i_dz = weight1 * aos_grad_in_r_array(i,ipoint,3)
do k = 1, ao_num do k = 1, ao_num
!ao_k_r = aos_in_r_array_transp(ipoint,k)
ao_k_r = aos_in_r_array(k,ipoint) ao_k_r = aos_in_r_array(k,ipoint)
!tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)
!tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)
!tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)
tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array(k,ipoint,1) tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array(k,ipoint,1)
tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array(k,ipoint,2) tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array(k,ipoint,2)
tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array(k,ipoint,3) tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array(k,ipoint,3)
@ -134,44 +61,11 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_loop, (ao_num, ao_num, ao_
! --- ! ---
!do ipoint = 1, n_points_final_grid
! weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
! do l = 1, ao_num
! ao_l_r = weight1 * aos_in_r_array_transp (ipoint,l)
! ao_l_dx = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,1)
! ao_l_dy = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,2)
! ao_l_dz = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,3)
! do j = 1, ao_num
! ao_j_r = aos_in_r_array_transp(ipoint,j)
! tmp_x = ao_j_r * ao_l_dx - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,1)
! tmp_y = ao_j_r * ao_l_dy - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,2)
! tmp_z = ao_j_r * ao_l_dz - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,3)
! do i = 1, ao_num
! do k = 1, ao_num
! contrib_x = int2_grad1_u12_ao(k,i,ipoint,1) * tmp_x
! contrib_y = int2_grad1_u12_ao(k,i,ipoint,2) * tmp_y
! contrib_z = int2_grad1_u12_ao(k,i,ipoint,3) * tmp_z
! ac_mat(k,i,l,j) += contrib_x + contrib_y + contrib_z
! enddo
! enddo
! enddo
! enddo
!enddo
! ---
do j = 1, ao_num do j = 1, ao_num
do l = 1, ao_num do l = 1, ao_num
do i = 1, ao_num do i = 1, ao_num
do k = 1, ao_num do k = 1, ao_num
tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
!tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j)
enddo enddo
enddo enddo
enddo enddo

View File

@ -70,14 +70,15 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
PROVIDE v_1b_grad v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b PROVIDE v_1b_grad
PROVIDE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
int2_grad1_u12_ao = 0.d0 int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) & !$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad & !$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad &
!$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao) !$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b_an, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static) !$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint) x = final_grid_points(1,ipoint)
@ -90,7 +91,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
do j = 1, ao_num do j = 1, ao_num
do i = 1, ao_num do i = 1, ao_num
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint) tmp2 = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
@ -100,7 +101,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
elseif(j1b_type .ge. 100) then elseif(j1b_type .ge. 100) then

View File

@ -1,19 +1,18 @@
! ---
program test_non_h program test_non_h
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 50 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 74 my_n_pt_r_grid = tc_grid1_r
!my_n_pt_r_grid = 400 my_n_pt_a_grid = tc_grid1_a
!my_n_pt_a_grid = 974
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_grad_squared !call routine_grad_squared()
!call routine_fit !call routine_fit()
call test_ipp() call test_ipp()
end end

View File

@ -3,8 +3,9 @@ program compute_deltamu_right
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.

View File

@ -6,10 +6,9 @@ program tc_bi_ortho
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
!my_n_pt_r_grid = 100 my_n_pt_a_grid = tc_grid1_a
!my_n_pt_a_grid = 170
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call ERI_dump() call ERI_dump()

View File

@ -7,16 +7,12 @@ program print_tc_energy
implicit none implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = 30 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 266
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
@ -24,8 +20,6 @@ program print_tc_energy
PROVIDE j1b_type PROVIDE j1b_type
print*, 'j1b_type = ', j1b_type print*, 'j1b_type = ', j1b_type
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call write_tc_energy() call write_tc_energy()
end end

View File

@ -1,16 +1,26 @@
! ---
program test_spin_dens program test_spin_dens
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end. ! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call tc_print_mulliken_sd call tc_print_mulliken_sd()
! call test !call test
end end

View File

@ -7,12 +7,15 @@ program print_tc_var
implicit none implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call write_tc_var() call write_tc_var()

View File

@ -1,20 +1,31 @@
! ---
program print_tc_bi_ortho program print_tc_bi_ortho
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! if(three_body_h_tc)then ! if(three_body_h_tc)then
! call provide_all_three_ints_bi_ortho ! call provide_all_three_ints_bi_ortho
! endif ! endif
! call routine ! call routine
call write_l_r_wf call write_l_r_wf
end end
subroutine write_l_r_wf subroutine write_l_r_wf

View File

@ -7,12 +7,16 @@ program pt2_tc_cisd
! !
END_DOC END_DOC
implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
print*, ' nb of states = ', N_states print*, ' nb of states = ', N_states
print*, ' nb of det = ', N_det print*, ' nb of det = ', N_det

View File

@ -1,35 +1,59 @@
program tc_natorb_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call print_energy_and_mos
call save_tc_natorb
! call minimize_tc_orb_angles
end
subroutine save_tc_natorb ! ---
program tc_natorb_bi_ortho
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none implicit none
print *, 'Hello world'
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
call print_energy_and_mos()
call save_tc_natorb()
!call minimize_tc_orb_angles()
end
! ---
subroutine save_tc_natorb()
implicit none
print*,'Saving the natorbs ' print*,'Saving the natorbs '
provide natorb_tc_leigvec_ao natorb_tc_reigvec_ao provide natorb_tc_leigvec_ao natorb_tc_reigvec_ao
call ezfio_set_bi_ortho_mos_mo_l_coef(natorb_tc_leigvec_ao) call ezfio_set_bi_ortho_mos_mo_l_coef(natorb_tc_leigvec_ao)
call ezfio_set_bi_ortho_mos_mo_r_coef(natorb_tc_reigvec_ao) call ezfio_set_bi_ortho_mos_mo_r_coef(natorb_tc_reigvec_ao)
call save_ref_determinant_nstates_1 call save_ref_determinant_nstates_1()
call ezfio_set_determinants_read_wf(.False.) call ezfio_set_determinants_read_wf(.False.)
end
subroutine save_ref_determinant_nstates_1 end
implicit none
! ---
subroutine save_ref_determinant_nstates_1()
use bitmasks use bitmasks
double precision :: buffer(1,N_states) implicit none
double precision :: buffer(1,N_states)
buffer = 0.d0 buffer = 0.d0
buffer(1,1) = 1.d0 buffer(1,1) = 1.d0
call save_wavefunction_general(1,1,ref_bitmask,1,buffer) call save_wavefunction_general(1, 1, ref_bitmask, 1, buffer)
end
end

View File

@ -1,15 +1,24 @@
program tc_bi_ortho
implicit none ! ---
program select_dets_bi_ortho()
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!!!!!!!!!!!!!!! WARNING NO 3-BODY !!!!!!!!!!!!!!! WARNING NO 3-BODY
!!!!!!!!!!!!!!! WARNING NO 3-BODY !!!!!!!!!!!!!!! WARNING NO 3-BODY
@ -22,6 +31,8 @@ program tc_bi_ortho
! call test ! call test
end end
! ---
subroutine routine_test subroutine routine_test
implicit none implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features use bitmasks ! you need to include the bitmasks_module.f90 features
@ -57,5 +68,7 @@ subroutine routine_test
enddo enddo
call save_wavefunction_general(n_good,n_states,dets,n_good,coef_new) call save_wavefunction_general(n_good,n_states,dets,n_good,coef_new)
end end
! ---

View File

@ -1,4 +1,6 @@
! ---
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree) subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
BEGIN_DOC BEGIN_DOC
@ -14,81 +16,89 @@ subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
integer :: occ(Nint*bit_kind_size,2) integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2) integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int double precision :: direct_int, exchange_int, ref
double precision :: sym_3_e_int_from_6_idx_tensor double precision, external :: sym_3_e_int_from_6_idx_tensor
double precision :: three_e_diag_parrallel_spin double precision, external :: three_e_diag_parrallel_spin
if(core_tc_op)then PROVIDE mo_l_coef mo_r_coef
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1)) if(core_tc_op) then
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2)) do i = 1, Nint
enddo key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
call bitstring_to_list_ab(key_i_core,occ,Ne,Nint) key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else else
call bitstring_to_list_ab(key_i,occ,Ne,Nint) call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif endif
hthree = 0.d0 hthree = 0.d0
if(Ne(1)+Ne(2).ge.3)then if((Ne(1)+Ne(2)) .ge. 3) then
!! ! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
! direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) USES THE 6-IDX TENSOR
! exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) USES THE 6-IDX TENSOR
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
enddo
! beta/beta/alpha three-body ! alpha/alpha/beta three-body
do i = 1, Ne(2) do i = 1, Ne(1)
ii = occ(i,2) ii = occ(i,1)
do j = i+1, Ne(2) do j = i+1, Ne(1)
jj = occ(j,2) jj = occ(j,1)
do m = 1, Ne(1) do m = 1, Ne(2)
mm = occ(m,1) mm = occ(m,2)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
hthree += direct_int - exchange_int direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
enddo exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
hthree += direct_int - exchange_int
enddo
enddo
enddo enddo
enddo
! alpha/alpha/alpha three-body ! beta/beta/alpha three-body
do i = 1, Ne(1) do i = 1, Ne(2)
ii = occ(i,1) ! 1 ii = occ(i,2)
do j = i+1, Ne(1) do j = i+1, Ne(2)
jj = occ(j,1) ! 2 jj = occ(j,2)
do m = j+1, Ne(1) do m = 1, Ne(1)
mm = occ(m,1) ! 3 mm = occ(m,1)
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR !direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS !exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
enddo direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo enddo
enddo
! beta/beta/beta three-body ! alpha/alpha/alpha three-body
do i = 1, Ne(2) do i = 1, Ne(1)
ii = occ(i,2) ! 1 ii = occ(i,1) ! 1
do j = i+1, Ne(2) do j = i+1, Ne(1)
jj = occ(j,2) ! 2 jj = occ(j,1) ! 2
do m = j+1, Ne(2) do m = j+1, Ne(1)
mm = occ(m,2) ! 3 mm = occ(m,1) ! 3
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR !hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo enddo
enddo
enddo enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
endif endif
end end
! ---
subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree) subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)

View File

@ -1,3 +1,4 @@
! --- ! ---
subroutine provide_all_three_ints_bi_ortho() subroutine provide_all_three_ints_bi_ortho()
@ -25,9 +26,9 @@ subroutine provide_all_three_ints_bi_ortho()
PROVIDE normal_two_body_bi_orth PROVIDE normal_two_body_bi_orth
endif endif
endif endif
return return
end end
! --- ! ---
@ -46,13 +47,19 @@ subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
END_DOC END_DOC
use bitmasks use bitmasks
integer, intent(in) :: Nint integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: htot double precision, intent(out) :: htot
double precision :: hmono, htwoe, hthree double precision :: hmono, htwoe, hthree
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
end end
! ---
subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot) subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
BEGIN_DOC BEGIN_DOC
! !
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis ! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
@ -80,11 +87,11 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
call get_excitation_degree(key_i, key_j, degree, Nint) call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return if(degree.gt.2) return
if(degree == 0)then if(degree == 0) then
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot) call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
else if (degree == 1)then else if (degree == 1) then
call single_htilde_mu_mat_fock_bi_ortho(Nint,key_j, key_i , hmono, htwoe, hthree, htot) call single_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i , hmono, htwoe, hthree, htot)
else if(degree == 2)then else if(degree == 2) then
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot) call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
endif endif

View File

@ -1,32 +1,48 @@
! ---
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot] BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e] &BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e] &BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e] &BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
implicit none
BEGIN_DOC BEGIN_DOC
! Various component of the TC energy for the reference "HF" Slater determinant ! Various component of the TC energy for the reference "HF" Slater determinant
END_DOC END_DOC
double precision :: hmono, htwoe, htot, hthree
call diag_htilde_mu_mat_bi_ortho_slow(N_int,HF_bitmask , hmono, htwoe, htot) implicit none
ref_tc_energy_1e = hmono double precision :: hmono, htwoe, htot, hthree
ref_tc_energy_2e = htwoe
if(three_body_h_tc)then PROVIDE mo_l_coef mo_r_coef
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree call diag_htilde_mu_mat_bi_ortho_slow(N_int, HF_bitmask, hmono, htwoe, htot)
else
ref_tc_energy_3e = 0.d0 ref_tc_energy_1e = hmono
endif ref_tc_energy_2e = htwoe
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
END_PROVIDER if(three_body_h_tc) then
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
END_PROVIDER
! ---
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot) subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
implicit none
BEGIN_DOC BEGIN_DOC
! Computes $\langle i|H|i \rangle$. ! Computes $\langle i|H|i \rangle$.
END_DOC END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2) implicit none
double precision, intent(out) :: hmono,htwoe,htot,hthree integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot, hthree
integer(bit_kind) :: hole(Nint,2) integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2) integer(bit_kind) :: particle(Nint,2)
@ -40,7 +56,6 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0 nexc(1) = 0
nexc(2) = 0 nexc(2) = 0
do i=1,Nint do i=1,Nint
@ -55,15 +70,15 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
enddo enddo
if (nexc(1)+nexc(2) == 0) then if (nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e htwoe = ref_tc_energy_2e
hthree= ref_tc_energy_3e hthree = ref_tc_energy_3e
htot = ref_tc_energy_tot htot = ref_tc_energy_tot
return return
endif endif
!call debug_det(det_in,Nint) !call debug_det(det_in,Nint)
integer :: tmp(2) integer :: tmp(2)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint) call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
@ -73,27 +88,31 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree = ref_tc_energy_3e
det_tmp = ref_bitmask det_tmp = ref_bitmask
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e do ispin = 1, 2
hthree= ref_tc_energy_3e
do ispin=1,2
na = elec_num_tab(ispin) na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1) nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin) do i = 1, nexc(ispin)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb) call ac_tc_operator(occ_particle(i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb) call a_tc_operator (occ_hole (i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
enddo enddo
enddo enddo
htot = hmono+htwoe+hthree+nuclear_repulsion
htot = hmono + htwoe + hthree + nuclear_repulsion
end end
subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb) ! ---
use bitmasks
implicit none subroutine ac_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
BEGIN_DOC BEGIN_DOC
! Routine that computes one- and two-body energy corresponding ! Routine that computes one- and two-body energy corresponding
! !
@ -105,16 +124,19 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
! !
! and the quantities hmono,htwoe,hthree are INCREMENTED ! and the quantities hmono,htwoe,hthree are INCREMENTED
END_DOC END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb use bitmasks
implicit none
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2) integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree double precision, intent(inout) :: hmono, htwoe, hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k, l, i, jj, mm, j, m
integer :: tmp(2)
double precision :: direct_int, exchange_int
if (iorb < 1) then if (iorb < 1) then
print *, irp_here, ': iorb < 1' print *, irp_here, ': iorb < 1'
@ -131,7 +153,6 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
ASSERT (ispin < 3) ASSERT (ispin < 3)
ASSERT (Nint > 0) ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint) call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num) ASSERT (tmp(1) == elec_alpha_num)
@ -147,50 +168,54 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb) hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin ! Same spin
do i=1,na do i = 1, na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo enddo
! Opposite spin ! Opposite spin
do i=1,nb do i = 1, nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo enddo
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then if(three_body_h_tc .and. (elec_num.gt.2) .and. three_e_3_idx_term) then
!!!!! 3-e part
!! same-spin/same-spin !!!!! 3-e part
do j = 1, na !! same-spin/same-spin
jj = occ(j,ispin) do j = 1, na
do m = j+1, na jj = occ(j,ispin)
mm = occ(m,ispin) do m = j+1, na
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb) mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo enddo
enddo !! same-spin/oposite-spin
!! same-spin/oposite-spin do j = 1, na
do j = 1, na jj = occ(j,ispin)
jj = occ(j,ispin) do m = 1, nb
do m = 1, nb mm = occ(m,other_spin)
mm = occ(m,other_spin) direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR hthree += direct_int - exchange_int
hthree += direct_int - exchange_int enddo
enddo enddo
enddo !! oposite-spin/opposite-spin
!! oposite-spin/opposite-spin
do j = 1, nb do j = 1, nb
jj = occ(j,other_spin) jj = occ(j,other_spin)
do m = j+1, nb do m = j+1, nb
mm = occ(m,other_spin) mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int hthree += direct_int - exchange_int
enddo enddo
enddo enddo
endif endif
na = na+1 na = na+1
end end
! ---
subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb) subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
use bitmasks use bitmasks
implicit none implicit none
@ -460,14 +485,16 @@ subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb) hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin ! Same spin
do i=1,na do i = 1, na
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb) htwoe = htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo enddo
! Opposite spin ! Opposite spin
do i=1,nb do i = 1, nb
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb) htwoe = htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo enddo
end end
! ---

View File

@ -21,7 +21,7 @@ subroutine htilde_mu_mat_bi_ortho_tot_slow(key_j, key_i, Nint, htot)
integer :: degree integer :: degree
call get_excitation_degree(key_j, key_i, degree, Nint) call get_excitation_degree(key_j, key_i, degree, Nint)
if(degree.gt.2)then if(degree.gt.2) then
htot = 0.d0 htot = 0.d0
else else
call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot) call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
@ -60,22 +60,22 @@ subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree,
call get_excitation_degree(key_i, key_j, degree, Nint) call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return if(degree.gt.2) return
if(degree == 0)then if(degree == 0) then
call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot) call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
else if (degree == 1)then else if (degree == 1) then
call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot) call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
else if(degree == 2)then else if(degree == 2) then
call double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot) call double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
endif endif
if(three_body_h_tc) then if(three_body_h_tc) then
if(degree == 2) then if(degree == 2) then
if(.not.double_normal_ord.and.elec_num.gt.2.and.three_e_5_idx_term) then if((.not.double_normal_ord) .and. (elec_num .gt. 2) .and. three_e_5_idx_term) then
call double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree) call double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
endif endif
else if(degree == 1.and.elec_num.gt.2.and.three_e_4_idx_term) then else if((degree == 1) .and. (elec_num .gt. 2) .and. three_e_4_idx_term) then
call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree) call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
else if(degree == 0.and.elec_num.gt.2.and.three_e_3_idx_term) then else if((degree == 0) .and. (elec_num .gt. 2) .and. three_e_3_idx_term) then
call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree) call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
endif endif
endif endif
@ -106,6 +106,8 @@ subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
double precision :: get_mo_two_e_integral_tc_int double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2) integer(bit_kind) :: key_i_core(Nint,2)
PROVIDE mo_bi_ortho_tc_two_e
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e ! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
! !
! PROVIDE mo_integrals_erf_map core_energy nuclear_repulsion core_bitmask ! PROVIDE mo_integrals_erf_map core_energy nuclear_repulsion core_bitmask
@ -135,15 +137,6 @@ subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
ii = occ(i,ispin) ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii) hmono += mo_bi_ortho_tc_one_e(ii,ii)
! if(j1b_gauss .eq. 1) then
! print*,'j1b not implemented for bi ortho TC'
! print*,'stopping ....'
! stop
! !hmono += mo_j1b_gauss_hermI (ii,ii) &
! ! + mo_j1b_gauss_hermII (ii,ii) &
! ! + mo_j1b_gauss_nonherm(ii,ii)
! endif
! if(core_tc_op)then ! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho' ! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...' ! print*,'stopping ...'

View File

@ -41,14 +41,21 @@ subroutine give_all_perm_for_three_e(n,l,k,m,j,i,idx_list,phase)
end end
double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i) ! ---
implicit none
BEGIN_DOC double precision function sym_3_e_int_from_6_idx_tensor(n, l, k, m, j, i)
! returns all good combinations of permutations of integrals with the good signs
! BEGIN_DOC
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins ! returns all good combinations of permutations of integrals with the good signs
END_DOC !
integer, intent(in) :: n,l,k,m,j,i ! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
PROVIDE mo_l_coef mo_r_coef
sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct
+ three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation + three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation
+ three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation + three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation
@ -56,8 +63,11 @@ double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i)
- three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed - three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed
- three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed - three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed
return
end end
! ---
double precision function direct_sym_3_e_int(n,l,k,m,j,i) double precision function direct_sym_3_e_int(n,l,k,m,j,i)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -83,15 +93,25 @@ double precision function direct_sym_3_e_int(n,l,k,m,j,i)
end end
double precision function three_e_diag_parrallel_spin(m,j,i) ! ---
implicit none
integer, intent(in) :: i,j,m double precision function three_e_diag_parrallel_spin(m, j, i)
implicit none
integer, intent(in) :: i, j, m
PROVIDE mo_l_coef mo_r_coef
three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct
three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations
- three_e_3_idx_exch23_bi_ort(m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange - three_e_3_idx_exch23_bi_ort (m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
- three_e_3_idx_exch12_bi_ort(m,j,i) ! last exchange - three_e_3_idx_exch12_bi_ort (m,j,i) ! last exchange
return
end end
! ---
double precision function three_e_single_parrallel_spin(m,j,k,i) double precision function three_e_single_parrallel_spin(m,j,k,i)
implicit none implicit none
integer, intent(in) :: i,k,j,m integer, intent(in) :: i,k,j,m

View File

@ -8,11 +8,13 @@ program tc_bi_ortho
END_DOC END_DOC
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
print*, ' nb of states = ', N_states print*, ' nb of states = ', N_states
print*, ' nb of det = ', N_det print*, ' nb of det = ', N_det
@ -20,22 +22,29 @@ program tc_bi_ortho
call routine_diag() call routine_diag()
call write_tc_energy() call write_tc_energy()
call save_tc_bi_ortho_wavefunction() call save_tc_bi_ortho_wavefunction()
end
subroutine test
implicit none
integer :: i,j
double precision :: hmono,htwoe,hthree,htot
use bitmasks
print*,'reading the wave function '
do i = 1, N_det
call debug_det(psi_det(1,1,i),N_int)
print*,i,psi_l_coef_bi_ortho(i,1)*psi_r_coef_bi_ortho(i,1)
print*,i,psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
enddo
end end
! ---
subroutine test()
use bitmasks
implicit none
integer :: i, j
double precision :: hmono, htwoe, hthree, htot
print*, 'reading the wave function '
do i = 1, N_det
call debug_det(psi_det(1,1,i), N_int)
print*, i, psi_l_coef_bi_ortho(i,1)*psi_r_coef_bi_ortho(i,1)
print*, i, psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
enddo
end
! ---
subroutine routine_diag() subroutine routine_diag()
implicit none implicit none

View File

@ -1,19 +1,32 @@
! ---
program tc_bi_ortho_prop program tc_bi_ortho_prop
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call routine_diag !call routine_diag
call test call test
end end
! ---
subroutine test subroutine test
implicit none implicit none
integer :: i integer :: i

View File

@ -1,20 +1,32 @@
program tc_bi_ortho
implicit none ! ---
program tc_cisd_sc2
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test call test
end end
subroutine test ! ---
subroutine test()
implicit none implicit none
! double precision, allocatable :: dressing_dets(:),e_corr_dets(:) ! double precision, allocatable :: dressing_dets(:),e_corr_dets(:)
! allocate(dressing_dets(N_det),e_corr_dets(N_det)) ! allocate(dressing_dets(N_det),e_corr_dets(N_det))

View File

@ -1,42 +1,56 @@
! ---
use bitmasks use bitmasks
BEGIN_PROVIDER [ integer, index_HF_psi_det] ! ---
implicit none
integer :: i,degree BEGIN_PROVIDER [integer, index_HF_psi_det]
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 0)then
index_HF_psi_det = i
exit
endif
enddo
END_PROVIDER
subroutine diagonalize_CI_tc
implicit none implicit none
integer :: i, degree
do i = 1, N_det
call get_excitation_degree(HF_bitmask, psi_det(1,1,i), degree, N_int)
if(degree == 0) then
index_HF_psi_det = i
exit
endif
enddo
END_PROVIDER
! ---
subroutine diagonalize_CI_tc()
BEGIN_DOC BEGIN_DOC
! Replace the coefficients of the |CI| states by the coefficients of the ! Replace the coefficients of the |CI| states by the coefficients of the
! eigenstates of the |CI| matrix. ! eigenstates of the |CI| matrix.
END_DOC END_DOC
integer :: i,j
do j=1,N_states implicit none
do i=1,N_det integer :: i, j
do j = 1, N_states
do i = 1, N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j) psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j) psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
enddo enddo
enddo enddo
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho
end end
! ---
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states) ]
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states)] &BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)] &BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)] &BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)] &BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth, (N_states)] &BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
BEGIN_DOC BEGIN_DOC
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis ! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
@ -44,29 +58,29 @@ end
implicit none implicit none
integer :: i, idx_dress, j, istate, k integer :: i, idx_dress, j, istate, k
integer :: i_good_state, i_other_state, i_state
integer :: n_real_tc_bi_orth_eigval_right, igood_r, igood_l
logical :: converged, dagger logical :: converged, dagger
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l double precision, parameter :: alpha = 0.1d0
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:) integer, allocatable :: index_good_state_array(:)
integer, allocatable :: iorder(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:), leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
double precision, allocatable :: s2_values_tmp(:), H_prime(:,:), expect_e(:) double precision, allocatable :: s2_values_tmp(:), H_prime(:,:), expect_e(:)
double precision, parameter :: alpha = 0.1d0 double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
integer :: i_good_state,i_other_state, i_state double precision, allocatable :: Stmp(:,:)
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
double precision, allocatable :: Stmp(:,:)
integer, allocatable :: iorder(:)
PROVIDE N_det N_int PROVIDE N_det N_int
if(n_det .le. N_det_max_full) then if(N_det .le. N_det_max_full) then
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det),expect_e(N_det)) allocate(reigvec_tc_bi_orth_tmp(N_det,N_det), leigvec_tc_bi_orth_tmp(N_det,N_det), eigval_right_tmp(N_det), expect_e(N_det))
allocate (H_prime(N_det,N_det),s2_values_tmp(N_det)) allocate(H_prime(N_det,N_det), s2_values_tmp(N_det))
H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det) H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det)
if(s2_eig) then if(s2_eig) then
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det) H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det do j = 1, N_det
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2 H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo enddo
endif endif

View File

@ -31,7 +31,9 @@
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)] ! ---
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)]
implicit none implicit none
integer ::i,j integer ::i,j
do i = 1, N_det do i = 1, N_det

View File

@ -12,10 +12,9 @@ program tc_som
print *, ' do not forget to do tc-scf first' print *, ' do not forget to do tc-scf first'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
! my_n_pt_r_grid = 10 ! small grid for quick debug my_n_pt_a_grid = tc_grid1_a
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf PROVIDE mu_erf

View File

@ -1,21 +1,34 @@
! ---
program test_natorb program test_natorb
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end. ! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine call routine()
! call test ! call test()
end end
subroutine routine ! ---
subroutine routine()
implicit none implicit none
double precision, allocatable :: fock_diag(:),eigval(:),leigvec(:,:),reigvec(:,:),mat_ref(:,:) double precision, allocatable :: fock_diag(:),eigval(:),leigvec(:,:),reigvec(:,:),mat_ref(:,:)
allocate(eigval(mo_num),leigvec(mo_num,mo_num),reigvec(mo_num,mo_num),fock_diag(mo_num),mat_ref(mo_num, mo_num)) allocate(eigval(mo_num),leigvec(mo_num,mo_num),reigvec(mo_num,mo_num),fock_diag(mo_num),mat_ref(mo_num, mo_num))

View File

@ -1,19 +1,32 @@
! ---
program test_normal_order program test_normal_order
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call provide_all_three_ints_bi_ortho call provide_all_three_ints_bi_ortho()
call test call test()
end end
! ---
subroutine test subroutine test
implicit none implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features use bitmasks ! you need to include the bitmasks_module.f90 features

View File

@ -1,14 +1,22 @@
! ---
program test_tc program test_tc
implicit none
read_wf = .True. implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30 my_grid_becke = .True.
my_n_pt_a_grid = 50 PROVIDE tc_grid1_a tc_grid1_r
read_wf = .True. my_n_pt_r_grid = tc_grid1_r
touch read_wf my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine_test_s2
call routine_test_s2_davidson read_wf = .True.
touch read_wf
call routine_test_s2
call routine_test_s2_davidson
end end
subroutine routine_test_s2 subroutine routine_test_s2

View File

@ -1,15 +1,24 @@
! ---
program tc_bi_ortho program tc_bi_ortho
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_h_u0 ! call test_h_u0
! call test_slater_tc_opt ! call test_slater_tc_opt

View File

@ -1,22 +1,32 @@
! ---
program test_tc_fock program test_tc_fock
implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
implicit none
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_1 !call routine_1
!call routine_2 !call routine_2
! call routine_3() ! call routine_3()
! call test_3e ! call test_3e
call routine_tot call routine_tot
end end
! --- ! ---

View File

@ -262,3 +262,16 @@ doc: If |true|, use Manu IPP
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: True default: True
[tc_grid1_a]
type: integer
doc: size of angular grid over r1
interface: ezfio,provider,ocaml
default: 50
[tc_grid1_r]
type: integer
doc: size of radial grid over r1
interface: ezfio,provider,ocaml
default: 30

View File

@ -10,8 +10,9 @@ program combine_lr_tcscf
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True. bi_ortho = .True.

View File

@ -1,17 +1,26 @@
program print_angles
implicit none ! ---
BEGIN_DOC
! program that minimizes the angle between left- and right-orbitals when degeneracies are found in the TC-Fock matrix program minimize_tc_angles
END_DOC
BEGIN_DOC
! program that minimizes the angle between left- and right-orbitals when degeneracies are found in the TC-Fock matrix
END_DOC
implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_n_pt_r_grid my_n_pt_a_grid touch my_n_pt_r_grid my_n_pt_a_grid
! call sort_by_tc_fock
! call sort_by_tc_fock
! TODO ! TODO
! check if rotations of orbitals affect the TC energy ! check if rotations of orbitals affect the TC energy
! and refuse the step ! and refuse the step
call minimize_tc_orb_angles call minimize_tc_orb_angles
end end

View File

@ -11,10 +11,9 @@ program molden_lr_mos
print *, 'starting ...' print *, 'starting ...'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
! my_n_pt_r_grid = 10 ! small grid for quick debug my_n_pt_a_grid = tc_grid1_a
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call molden_lr !call molden_lr

View File

@ -7,10 +7,9 @@ program print_fit_param
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
! my_n_pt_r_grid = 10 ! small grid for quick debug my_n_pt_a_grid = tc_grid1_a
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call create_guess !call create_guess

View File

@ -8,16 +8,9 @@ program print_tcscf_energy
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
!my_n_pt_r_grid = 30 my_n_pt_r_grid = tc_grid1_r
!my_n_pt_a_grid = 50 my_n_pt_a_grid = tc_grid1_a
my_n_pt_r_grid = 100
my_n_pt_a_grid = 170
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 266
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main() call main()

View File

@ -10,8 +10,9 @@ program rotate_tcscf_orbitals
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True. bi_ortho = .True.

View File

@ -10,10 +10,9 @@ program tc_petermann_factor
implicit none implicit none
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
! my_n_pt_r_grid = 10 ! small grid for quick debug my_n_pt_a_grid = tc_grid1_a
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main() call main()

View File

@ -14,14 +14,10 @@ program tc_scf
my_grid_becke = .True. my_grid_becke = .True.
!my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
!my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
my_n_pt_r_grid = 100
my_n_pt_a_grid = 170
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf PROVIDE mu_erf

View File

@ -9,10 +9,9 @@ program test_ints
print *, ' starting test_ints ...' print *, ' starting test_ints ...'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_a_grid = 50 my_n_pt_r_grid = tc_grid1_r
! my_n_pt_r_grid = 15 ! small grid for quick debug my_n_pt_a_grid = tc_grid1_a
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True. my_extra_grid_becke = .True.
@ -280,7 +279,7 @@ subroutine routine_v_ij_u_cst_mu_j1b_test
do i = 1, ao_num do i = 1, ao_num
do j = 1, ao_num do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo enddo
enddo enddo
enddo enddo
@ -506,7 +505,7 @@ subroutine routine_v_ij_u_cst_mu_j1b
do i = 1, ao_num do i = 1, ao_num
do j = 1, ao_num do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo enddo
enddo enddo
enddo enddo

View File

@ -418,7 +418,7 @@ subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
xab = xa-xb xab = xa-xb
ab = ab*p_inv ab = ab*p_inv
k = ab*xab*xab k = ab*xab*xab
if (k > 40.d0) then if (k > 400.d0) then
k=0.d0 k=0.d0
return return
endif endif