qp2/src/fci_tc_bi/diagonalize_ci.irp.f

124 lines
4.3 KiB
Fortran

! ---
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc, norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
double precision :: pt2_tmp, pt1_norm, rpt2_tmp, abs_pt2
PROVIDE mo_l_coef mo_r_coef
pt2_tmp = pt2_data % pt2(1)
abs_pt2 = pt2_data % variance(1)
pt1_norm = pt2_data % overlap(1,1)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'PT2 = ',pt2_tmp
print*,'rPT2 = ',rpt2_tmp
print*,'|PT2| = ',abs_pt2
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
endif
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j))
enddo
enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho psi_coef psi_energy psi_s2
call save_tc_bi_ortho_wavefunction()
end
! ---
subroutine print_CI_dressed(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'PT2 = ',pt2_data % pt2(1)
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
endif
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth norm_ground_left_right_bi_orth psi_coef reigvec_tc_bi_orth
end
! ---