9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-10 21:53:29 +01:00
qp2/plugins/local/non_h_ints_mu/jast_deriv_utils_vect.irp.f

333 lines
9.0 KiB
Fortran
Raw Normal View History

2023-09-05 11:52:08 +02:00
! ---
subroutine get_grad1_u12_withsq_r1_seq(r1, n_grid2, resx, resy, resz, res)
BEGIN_DOC
!
! grad_1 u(r1,r2)
!
! this will be integrated numerically over r2:
! we use grid for r1 and extra_grid for r2
!
! for 99 < j1b_type < 199
!
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
!
END_DOC
implicit none
integer, intent(in) :: n_grid2
double precision, intent(in) :: r1(3)
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2)
integer :: jpoint
double precision :: v1b_r1
double precision :: grad1_v1b(3)
double precision, allocatable :: v1b_r2(:)
double precision, allocatable :: u2b_r12(:)
double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
double precision, external :: j1b_nucl
PROVIDE j1b_type
PROVIDE final_grid_points_extra
if( (j1b_type .eq. 100) .or. &
(j1b_type .ge. 200) .and. (j1b_type .lt. 300) ) then
call grad1_j12_mu_r1_seq(r1, n_grid2, resx, resy, resz)
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = resx(jpoint) * resx(jpoint) &
+ resy(jpoint) * resy(jpoint) &
+ resz(jpoint) * resz(jpoint)
enddo
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
allocate(v1b_r2(n_grid2))
allocate(u2b_r12(n_grid2))
allocate(gradx1_u2b(n_grid2))
allocate(grady1_u2b(n_grid2))
allocate(gradz1_u2b(n_grid2))
v1b_r1 = j1b_nucl(r1)
call grad1_j1b_nucl(r1, grad1_v1b)
call j1b_nucl_r1_seq(n_grid2, v1b_r2)
call j12_mu_r1_seq(r1, n_grid2, u2b_r12)
call grad1_j12_mu_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = (gradx1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(1)) * v1b_r2(jpoint)
resy(jpoint) = (grady1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(2)) * v1b_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(3)) * v1b_r2(jpoint)
res (jpoint) = resx(jpoint) * resx(jpoint) &
+ resy(jpoint) * resy(jpoint) &
+ resz(jpoint) * resz(jpoint)
enddo
deallocate(v1b_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
return
end subroutine get_grad1_u12_withsq_r1_seq
! ---
subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
BEGIN_DOC
!
! gradient of j(mu(r1,r2),r12) form of jastrow.
!
! if mu(r1,r2) = cst ---> j1b_type < 200 and
!
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
!
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
!
END_DOC
include 'constants.include.F'
implicit none
integer , intent(in) :: n_grid2
double precision, intent(in) :: r1(3)
double precision, intent(out) :: gradx(n_grid2)
double precision, intent(out) :: grady(n_grid2)
double precision, intent(out) :: gradz(n_grid2)
integer :: jpoint
double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy
gradz(jpoint) = tmp * dz
enddo
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
double precision :: mu_val, mu_tmp, mu_der(3)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
gradx(jpoint) = tmp * mu_der(1)
grady(jpoint) = tmp * mu_der(2)
gradz(jpoint) = tmp * mu_der(3)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
gradx(jpoint) = gradx(jpoint) + tmp * dx
grady(jpoint) = grady(jpoint) + tmp * dy
gradz(jpoint) = gradz(jpoint) + tmp * dz
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
return
end subroutine grad1_j12_mu_r1_seq
! ---
subroutine j12_mu_r1_seq(r1, n_grid2, res)
include 'constants.include.F'
implicit none
integer, intent(in) :: n_grid2
double precision, intent(in) :: r1(3)
double precision, intent(out) :: res(n_grid2)
integer :: jpoint
double precision :: r2(3)
double precision :: mu_tmp, r12
PROVIDE final_grid_points_extra
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
mu_tmp = mu_erf * r12
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu_r1_seq'
stop
endif
return
end subroutine j12_mu_r1_seq
! ---
subroutine j1b_nucl_r1_seq(n_grid2, res)
! TODO
! change loops order
implicit none
integer, intent(in) :: n_grid2
double precision, intent(out) :: res(n_grid2)
double precision :: r(3)
integer :: i, jpoint
double precision :: a, d, e, x, y, z
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
res = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2
r(1) = final_grid_points_extra(1,jpoint)
r(2) = final_grid_points_extra(2,jpoint)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
res(jpoint) -= dexp(-a*dsqrt(d))
enddo
enddo
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
res = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2
r(1) = final_grid_points_extra(1,jpoint)
r(2) = final_grid_points_extra(2,jpoint)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
e = 1.d0 - dexp(-a*d)
res(jpoint) *= e
enddo
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
res = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2
r(1) = final_grid_points_extra(1,jpoint)
r(2) = final_grid_points_extra(2,jpoint)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
res(jpoint) -= j1b_pen_coef(i) * dexp(-a*d)
enddo
enddo
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
res = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2
r(1) = final_grid_points_extra(1,jpoint)
r(2) = final_grid_points_extra(2,jpoint)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
res(jpoint) -= dexp(-a*d*d)
enddo
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_r1_seq'
stop
endif
return
end subroutine j1b_nucl_r1_seq
! ---