mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-12 14:43:29 +01:00
num integ grad & grad squared
This commit is contained in:
parent
38f8b96d41
commit
1f56b5d0f4
@ -33,6 +33,10 @@ doc: Number of angular grid points given from input. Warning, this number cannot
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1202
|
||||
|
||||
[n_points_extra_final_grid]
|
||||
type: integer
|
||||
doc: Total number of extra_grid points
|
||||
interface: ezfio
|
||||
|
||||
[extra_grid_type_sgn]
|
||||
type: integer
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
implicit none
|
||||
|
||||
if(.not.my_extra_grid_becke)then
|
||||
if(.not. my_extra_grid_becke) then
|
||||
select case (extra_grid_type_sgn)
|
||||
case(0)
|
||||
n_points_extra_radial_grid = 23
|
||||
@ -33,7 +33,7 @@
|
||||
stop
|
||||
end select
|
||||
else
|
||||
n_points_extra_radial_grid = my_n_pt_r_extra_grid
|
||||
n_points_extra_radial_grid = my_n_pt_r_extra_grid
|
||||
n_points_extra_integration_angular = my_n_pt_a_extra_grid
|
||||
endif
|
||||
|
||||
|
@ -23,29 +23,33 @@ BEGIN_PROVIDER [integer, n_points_extra_final_grid]
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*,'n_points_extra_final_grid = ',n_points_extra_final_grid
|
||||
print*,'n max point = ',n_points_extra_integration_angular*(n_points_extra_radial_grid*nucl_num - 1)
|
||||
! call ezfio_set_becke_numerical_grid_n_points_extra_final_grid(n_points_extra_final_grid)
|
||||
print*, ' n_points_extra_final_grid = ', n_points_extra_final_grid
|
||||
print*, ' n max point = ', n_points_extra_integration_angular*(n_points_extra_radial_grid*nucl_num - 1)
|
||||
call ezfio_set_becke_numerical_grid_n_points_extra_final_grid(n_points_extra_final_grid)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_extra, (3,n_points_extra_final_grid)]
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector_extra, (n_points_extra_final_grid) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_extra, (3,n_points_extra_final_grid) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_extra_reverse, (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num) ]
|
||||
implicit none
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector_extra, (n_points_extra_final_grid)]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_extra, (3,n_points_extra_final_grid)]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_extra_reverse, (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
|
||||
!
|
||||
! final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
||||
!
|
||||
! index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
||||
!
|
||||
! index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
||||
! final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
|
||||
!
|
||||
! final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
||||
!
|
||||
! index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
||||
!
|
||||
! index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l,i_count
|
||||
double precision :: r(3)
|
||||
|
||||
i_count = 0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_extra_radial_grid -1
|
||||
@ -67,3 +71,5 @@ END_PROVIDER
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
|
||||
implicit none
|
||||
|
||||
if(.not.my_grid_becke)then
|
||||
if(.not. my_grid_becke) then
|
||||
select case (grid_type_sgn)
|
||||
case(0)
|
||||
n_points_radial_grid = 23
|
||||
|
@ -13,17 +13,27 @@ program debug_fit
|
||||
|
||||
PROVIDE mu_erf j1b_pen
|
||||
|
||||
if(j1b_type .ge. 100) then
|
||||
my_extra_grid_becke = .True.
|
||||
PROVIDE tc_grid2_a tc_grid2_r
|
||||
my_n_pt_r_extra_grid = tc_grid2_r
|
||||
my_n_pt_a_extra_grid = tc_grid2_a
|
||||
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
|
||||
endif
|
||||
|
||||
!call test_j1b_nucl()
|
||||
!call test_grad_j1b_nucl()
|
||||
!call test_lapl_j1b_nucl()
|
||||
|
||||
!call test_list_b2()
|
||||
call test_list_b3()
|
||||
!call test_list_b3()
|
||||
|
||||
!call test_fit_u()
|
||||
!call test_fit_u2()
|
||||
!call test_fit_ugradu()
|
||||
|
||||
call test_grad1_u12_withsq_num()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
@ -643,4 +653,69 @@ end subroutine test_fit_u2
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_grad1_u12_withsq_num()
|
||||
|
||||
implicit none
|
||||
integer :: ipoint, jpoint, m
|
||||
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
|
||||
double precision, allocatable :: tmp_grad1_u12_squared(:,:), tmp_grad1_u12(:,:,:)
|
||||
|
||||
print*, ' test_grad1_u12_withsq_num ...'
|
||||
|
||||
PROVIDE grad1_u12_num grad1_u12_squared_num
|
||||
|
||||
allocate(tmp_grad1_u12_squared(n_points_extra_final_grid,n_points_final_grid))
|
||||
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_points_final_grid,3))
|
||||
|
||||
eps_ij = 1d-7
|
||||
acc_tot = 0.d0
|
||||
normalz = 0.d0
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,ipoint,1) &
|
||||
, tmp_grad1_u12(1,ipoint,2) &
|
||||
, tmp_grad1_u12(1,ipoint,3) &
|
||||
, tmp_grad1_u12_squared(1,ipoint))
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
|
||||
i_exc = grad1_u12_squared_num(jpoint,ipoint)
|
||||
i_num = tmp_grad1_u12_squared(jpoint,ipoint)
|
||||
acc_ij = dabs(i_exc - i_num)
|
||||
if(acc_ij .gt. eps_ij) then
|
||||
print *, ' problem in grad1_u12_squared_num on', ipoint, jpoint
|
||||
print *, ' analyt = ', i_exc
|
||||
print *, ' numeri = ', i_num
|
||||
print *, ' diff = ', acc_ij
|
||||
stop
|
||||
endif
|
||||
acc_tot += acc_ij
|
||||
normalz += dabs(i_num)
|
||||
|
||||
do m = 1, 3
|
||||
i_exc = grad1_u12_num(jpoint,ipoint,m)
|
||||
i_num = tmp_grad1_u12(jpoint,ipoint,m)
|
||||
acc_ij = dabs(i_exc - i_num)
|
||||
if(acc_ij .gt. eps_ij) then
|
||||
print *, ' problem in grad1_u12_num on', ipoint, jpoint, m
|
||||
print *, ' analyt = ', i_exc
|
||||
print *, ' numeri = ', i_num
|
||||
print *, ' diff = ', acc_ij
|
||||
stop
|
||||
endif
|
||||
acc_tot += acc_ij
|
||||
normalz += dabs(i_num)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!print*, ' acc_tot = ', acc_tot
|
||||
!print*, ' normalz = ', normalz
|
||||
print*, ' accuracy (%) = ', 100.d0 * acc_tot / normalz
|
||||
|
||||
return
|
||||
end subroutine test_grad1_u12_withsq_num
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
700
src/non_h_ints_mu/jast_deriv_utils.irp.f
Normal file
700
src/non_h_ints_mu/jast_deriv_utils.irp.f
Normal file
@ -0,0 +1,700 @@
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu(r1, r2)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision :: mu_tmp, r12
|
||||
|
||||
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
mu_tmp = mu_erf * r12
|
||||
|
||||
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end function j12_mu
|
||||
|
||||
! ---
|
||||
|
||||
subroutine grad1_j12_mu(r1, r2, grad)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! gradient of j(mu(r1,r2),r12) form of jastrow.
|
||||
!
|
||||
! if mu(r1,r2) = cst ---> j1b_type < 200 and
|
||||
!
|
||||
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
|
||||
!
|
||||
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: grad(3)
|
||||
double precision :: dx, dy, dz, r12, tmp
|
||||
|
||||
grad = 0.d0
|
||||
|
||||
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) return
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
grad(1) = tmp * dx
|
||||
grad(2) = tmp * dy
|
||||
grad(3) = tmp * dz
|
||||
|
||||
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
|
||||
|
||||
double precision :: mu_val, mu_tmp, mu_der(3)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
grad(1) = tmp * mu_der(1)
|
||||
grad(2) = tmp * mu_der(2)
|
||||
grad(3) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) return
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
grad(1) = grad(1) + tmp * dx
|
||||
grad(2) = grad(2) + tmp * dy
|
||||
grad(3) = grad(3) + tmp * dz
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine grad1_j12_mu
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j1b_nucl(r)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer :: i
|
||||
double precision :: a, d, e, x, y, z
|
||||
|
||||
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
|
||||
|
||||
j1b_nucl = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
j1b_nucl = j1b_nucl - dexp(-a*dsqrt(d))
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
j1b_nucl = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
e = 1.d0 - dexp(-a*d)
|
||||
j1b_nucl = j1b_nucl * e
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
j1b_nucl = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
j1b_nucl = j1b_nucl - j1b_pen_coef(i) * dexp(-a*d)
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
|
||||
|
||||
j1b_nucl = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = x*x + y*y + z*z
|
||||
j1b_nucl = j1b_nucl - dexp(-a*d*d)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end function j1b_nucl
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j1b_nucl_square(r)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer :: i
|
||||
double precision :: a, d, e, x, y, z
|
||||
|
||||
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
|
||||
|
||||
j1b_nucl_square = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
j1b_nucl_square = j1b_nucl_square - dexp(-a*dsqrt(d))
|
||||
enddo
|
||||
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
|
||||
|
||||
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
j1b_nucl_square = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
e = 1.d0 - dexp(-a*d)
|
||||
j1b_nucl_square = j1b_nucl_square * e
|
||||
enddo
|
||||
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
|
||||
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
j1b_nucl_square = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
j1b_nucl_square = j1b_nucl_square - j1b_pen_coef(i) * dexp(-a*d)
|
||||
enddo
|
||||
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
|
||||
|
||||
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
|
||||
|
||||
j1b_nucl_square = 1.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = x*x + y*y + z*z
|
||||
j1b_nucl_square = j1b_nucl_square - dexp(-a*d*d)
|
||||
enddo
|
||||
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_square'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end function j1b_nucl_square
|
||||
|
||||
! ---
|
||||
|
||||
subroutine grad1_j1b_nucl(r, grad)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: grad(3)
|
||||
integer :: ipoint, i, j, phase
|
||||
double precision :: x, y, z, dx, dy, dz
|
||||
double precision :: a, d, e
|
||||
double precision :: fact_x, fact_y, fact_z
|
||||
double precision :: ax_der, ay_der, az_der, a_expo
|
||||
|
||||
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
|
||||
|
||||
fact_x = 0.d0
|
||||
fact_y = 0.d0
|
||||
fact_z = 0.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = dsqrt(x*x + y*y + z*z)
|
||||
e = a * dexp(-a*d) / d
|
||||
|
||||
fact_x += e * x
|
||||
fact_y += e * y
|
||||
fact_z += e * z
|
||||
enddo
|
||||
|
||||
grad(1) = fact_x
|
||||
grad(2) = fact_y
|
||||
grad(3) = fact_z
|
||||
|
||||
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
x = r(1)
|
||||
y = r(2)
|
||||
z = r(3)
|
||||
|
||||
fact_x = 0.d0
|
||||
fact_y = 0.d0
|
||||
fact_z = 0.d0
|
||||
do i = 1, List_all_comb_b2_size
|
||||
|
||||
phase = 0
|
||||
a_expo = 0.d0
|
||||
ax_der = 0.d0
|
||||
ay_der = 0.d0
|
||||
az_der = 0.d0
|
||||
do j = 1, nucl_num
|
||||
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
|
||||
dx = x - nucl_coord(j,1)
|
||||
dy = y - nucl_coord(j,2)
|
||||
dz = z - nucl_coord(j,3)
|
||||
|
||||
phase += List_all_comb_b2(j,i)
|
||||
a_expo += a * (dx*dx + dy*dy + dz*dz)
|
||||
ax_der += a * dx
|
||||
ay_der += a * dy
|
||||
az_der += a * dz
|
||||
enddo
|
||||
e = -2.d0 * (-1.d0)**dble(phase) * dexp(-a_expo)
|
||||
|
||||
fact_x += e * ax_der
|
||||
fact_y += e * ay_der
|
||||
fact_z += e * az_der
|
||||
enddo
|
||||
|
||||
grad(1) = fact_x
|
||||
grad(2) = fact_y
|
||||
grad(3) = fact_z
|
||||
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
fact_x = 0.d0
|
||||
fact_y = 0.d0
|
||||
fact_z = 0.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = x*x + y*y + z*z
|
||||
e = a * j1b_pen_coef(i) * dexp(-a*d)
|
||||
|
||||
fact_x += e * x
|
||||
fact_y += e * y
|
||||
fact_z += e * z
|
||||
enddo
|
||||
|
||||
grad(1) = 2.d0 * fact_x
|
||||
grad(2) = 2.d0 * fact_y
|
||||
grad(3) = 2.d0 * fact_z
|
||||
|
||||
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
|
||||
|
||||
fact_x = 0.d0
|
||||
fact_y = 0.d0
|
||||
fact_z = 0.d0
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = x*x + y*y + z*z
|
||||
e = a * d * dexp(-a*d*d)
|
||||
|
||||
fact_x += e * x
|
||||
fact_y += e * y
|
||||
fact_z += e * z
|
||||
enddo
|
||||
|
||||
grad(1) = 4.d0 * fact_x
|
||||
grad(2) = 4.d0 * fact_y
|
||||
grad(3) = 4.d0 * fact_z
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for grad1_j1b_nucl'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine grad1_j1b_nucl
|
||||
|
||||
! ---
|
||||
|
||||
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: mu_val, mu_der(3)
|
||||
double precision :: r(3)
|
||||
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||
double precision :: dm_tot, tmp1, tmp2, tmp3
|
||||
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
|
||||
double precision :: f_rho1, f_rho2, d_drho_f_rho1
|
||||
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
|
||||
|
||||
if(j1b_type .eq. 200) then
|
||||
|
||||
!
|
||||
! r = 0.5 (r1 + r2)
|
||||
!
|
||||
! mu[rho(r)] = alpha sqrt(rho) + mu0 exp(-rho)
|
||||
!
|
||||
! d mu[rho(r)] / dx1 = 0.5 d mu[rho(r)] / dx
|
||||
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
|
||||
!
|
||||
|
||||
PROVIDE mu_r_ct mu_erf
|
||||
|
||||
r(1) = 0.5d0 * (r1(1) + r2(1))
|
||||
r(2) = 0.5d0 * (r1(2) + r2(2))
|
||||
r(3) = 0.5d0 * (r1(3) + r2(3))
|
||||
|
||||
call density_and_grad_alpha_beta(r, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
|
||||
dm_tot = dm_a(1) + dm_b(1)
|
||||
tmp1 = dsqrt(dm_tot)
|
||||
tmp2 = mu_erf * dexp(-dm_tot)
|
||||
|
||||
mu_val = mu_r_ct * tmp1 + tmp2
|
||||
|
||||
mu_der = 0.d0
|
||||
if(dm_tot .lt. 1d-7) return
|
||||
|
||||
tmp3 = 0.25d0 * mu_r_ct / tmp1 - 0.5d0 * tmp2
|
||||
mu_der(1) = tmp3 * (grad_dm_a(1,1) + grad_dm_b(1,1))
|
||||
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
|
||||
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
|
||||
|
||||
elseif(j1b_type .eq. 201) then
|
||||
|
||||
!
|
||||
! r = 0.5 (r1 + r2)
|
||||
!
|
||||
! mu[rho(r)] = alpha rho + mu0 exp(-rho)
|
||||
!
|
||||
! d mu[rho(r)] / dx1 = 0.5 d mu[rho(r)] / dx
|
||||
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
|
||||
!
|
||||
|
||||
PROVIDE mu_r_ct mu_erf
|
||||
|
||||
r(1) = 0.5d0 * (r1(1) + r2(1))
|
||||
r(2) = 0.5d0 * (r1(2) + r2(2))
|
||||
r(3) = 0.5d0 * (r1(3) + r2(3))
|
||||
|
||||
call density_and_grad_alpha_beta(r, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
|
||||
dm_tot = dm_a(1) + dm_b(1)
|
||||
tmp2 = mu_erf * dexp(-dm_tot)
|
||||
|
||||
mu_val = mu_r_ct * dm_tot + tmp2
|
||||
|
||||
tmp3 = 0.5d0 * (mu_r_ct - tmp2)
|
||||
mu_der(1) = tmp3 * (grad_dm_a(1,1) + grad_dm_b(1,1))
|
||||
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
|
||||
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
|
||||
|
||||
elseif(j1b_type .eq. 202) then
|
||||
|
||||
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||
!
|
||||
! RHO = rho(r1) + rho(r2)
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0 exp(-rho)
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) - mu0 exp(-rho(r1))] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf * exp(-rho)
|
||||
call get_all_f_rho(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||
mu_val = nume * inv_rho_tot
|
||||
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||
elseif(j1b_type .eq. 203) then
|
||||
|
||||
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||
!
|
||||
! RHO = rho(r1) + rho(r2)
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||
mu_val = nume * inv_rho_tot
|
||||
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||
elseif(j1b_type .eq. 204) then
|
||||
|
||||
! mu(r1,r2) = 1/2 * (f[rho(r1)] + f[rho(r2)]}
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/2 * d/dx1 (rho(r1) f[rho(r1)])
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
mu_val = 0.5d0 * ( f_rho1 + f_rho2)
|
||||
mu_der(1:3) = d_dx_rho_f_rho(1:3)
|
||||
else
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine mu_r_val_and_grad
|
||||
|
||||
! ---
|
||||
|
||||
subroutine grad1_j1b_nucl_square_num(r1, grad)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3)
|
||||
double precision, intent(out) :: grad(3)
|
||||
double precision :: r(3), eps, tmp_eps, vp, vm
|
||||
double precision, external :: j1b_nucl_square
|
||||
|
||||
eps = 1d-5
|
||||
tmp_eps = 0.5d0 / eps
|
||||
|
||||
r(1:3) = r1(1:3)
|
||||
|
||||
r(1) = r(1) + eps
|
||||
vp = j1b_nucl_square(r)
|
||||
r(1) = r(1) - 2.d0 * eps
|
||||
vm = j1b_nucl_square(r)
|
||||
r(1) = r(1) + eps
|
||||
grad(1) = tmp_eps * (vp - vm)
|
||||
|
||||
r(2) = r(2) + eps
|
||||
vp = j1b_nucl_square(r)
|
||||
r(2) = r(2) - 2.d0 * eps
|
||||
vm = j1b_nucl_square(r)
|
||||
r(2) = r(2) + eps
|
||||
grad(2) = tmp_eps * (vp - vm)
|
||||
|
||||
r(3) = r(3) + eps
|
||||
vp = j1b_nucl_square(r)
|
||||
r(3) = r(3) - 2.d0 * eps
|
||||
vm = j1b_nucl_square(r)
|
||||
r(3) = r(3) + eps
|
||||
grad(3) = tmp_eps * (vp - vm)
|
||||
|
||||
return
|
||||
end subroutine grad1_j1b_nucl_square_num
|
||||
|
||||
! ---
|
||||
|
||||
subroutine grad1_j12_mu_square_num(r1, r2, grad)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, intent(out) :: grad(3)
|
||||
double precision :: r(3)
|
||||
double precision :: eps, tmp_eps, vp, vm
|
||||
double precision, external :: j12_mu_square
|
||||
|
||||
eps = 1d-5
|
||||
tmp_eps = 0.5d0 / eps
|
||||
|
||||
r(1:3) = r1(1:3)
|
||||
|
||||
r(1) = r(1) + eps
|
||||
vp = j12_mu_square(r, r2)
|
||||
r(1) = r(1) - 2.d0 * eps
|
||||
vm = j12_mu_square(r, r2)
|
||||
r(1) = r(1) + eps
|
||||
grad(1) = tmp_eps * (vp - vm)
|
||||
|
||||
r(2) = r(2) + eps
|
||||
vp = j12_mu_square(r, r2)
|
||||
r(2) = r(2) - 2.d0 * eps
|
||||
vm = j12_mu_square(r, r2)
|
||||
r(2) = r(2) + eps
|
||||
grad(2) = tmp_eps * (vp - vm)
|
||||
|
||||
r(3) = r(3) + eps
|
||||
vp = j12_mu_square(r, r2)
|
||||
r(3) = r(3) - 2.d0 * eps
|
||||
vm = j12_mu_square(r, r2)
|
||||
r(3) = r(3) + eps
|
||||
grad(3) = tmp_eps * (vp - vm)
|
||||
|
||||
return
|
||||
end subroutine grad1_j12_mu_square_num
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j12_mu_square(r1, r2)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r1(3), r2(3)
|
||||
double precision, external :: j12_mu
|
||||
|
||||
j12_mu_square = j12_mu(r1, r2) * j12_mu(r1, r2)
|
||||
|
||||
return
|
||||
end function j12_mu_square
|
||||
|
||||
! ---
|
||||
|
||||
subroutine f_mu_and_deriv_mu(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! function giving mu as a function of rho
|
||||
!
|
||||
! f_mu = alpha * rho**beta + mu0 * exp(-rho)
|
||||
!
|
||||
! and its derivative with respect to rho d_drho_f_mu
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||
f_mu = alpha * (rho)**beta + mu0 * dexp(-rho)
|
||||
d_drho_f_mu = alpha * beta * rho**(beta-1.d0) - mu0 * dexp(-rho)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the density in r1,r2 and grad_rho at r1
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: grad_rho1(3),rho1,rho2
|
||||
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||
call density_and_grad_alpha_beta(r1, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
rho1 = dm_a(1) + dm_b(1)
|
||||
grad_rho1(1:3) = grad_dm_a(1:3,1) + grad_dm_b(1:3,1)
|
||||
call density_and_grad_alpha_beta(r2, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
rho2 = dm_a(1) + dm_b(1)
|
||||
end
|
||||
|
||||
subroutine get_all_f_rho(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||
double precision :: tmp
|
||||
call f_mu_and_deriv_mu(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||
call f_mu_and_deriv_mu(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||
end
|
||||
|
||||
|
||||
subroutine get_all_f_rho_simple(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||
double precision :: tmp
|
||||
call f_mu_and_deriv_mu_simple(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||
call f_mu_and_deriv_mu_simple(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||
end
|
||||
|
||||
subroutine f_mu_and_deriv_mu_simple(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! function giving mu as a function of rho
|
||||
!
|
||||
! f_mu = alpha * rho**beta + mu0
|
||||
!
|
||||
! and its derivative with respect to rho d_drho_f_mu
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||
f_mu = alpha * (rho)**beta + mu0
|
||||
d_drho_f_mu = alpha * beta * rho**(beta-1.d0)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
332
src/non_h_ints_mu/jast_deriv_utils_vect.irp.f
Normal file
332
src/non_h_ints_mu/jast_deriv_utils_vect.irp.f
Normal file
@ -0,0 +1,332 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_grad1_u12_withsq_r1_seq(r1, n_grid2, resx, resy, resz, res)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! grad_1 u(r1,r2)
|
||||
!
|
||||
! this will be integrated numerically over r2:
|
||||
! we use grid for r1 and extra_grid for r2
|
||||
!
|
||||
! for 99 < j1b_type < 199
|
||||
!
|
||||
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
|
||||
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_grid2
|
||||
double precision, intent(in) :: r1(3)
|
||||
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2)
|
||||
|
||||
integer :: jpoint
|
||||
double precision :: v1b_r1
|
||||
double precision :: grad1_v1b(3)
|
||||
double precision, allocatable :: v1b_r2(:)
|
||||
double precision, allocatable :: u2b_r12(:)
|
||||
double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
|
||||
double precision, external :: j1b_nucl
|
||||
|
||||
PROVIDE j1b_type
|
||||
PROVIDE final_grid_points_extra
|
||||
|
||||
if( (j1b_type .eq. 100) .or. &
|
||||
(j1b_type .ge. 200) .and. (j1b_type .lt. 300) ) then
|
||||
|
||||
call grad1_j12_mu_r1_seq(r1, n_grid2, resx, resy, resz)
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
res(jpoint) = resx(jpoint) * resx(jpoint) &
|
||||
+ resy(jpoint) * resy(jpoint) &
|
||||
+ resz(jpoint) * resz(jpoint)
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
|
||||
|
||||
allocate(v1b_r2(n_grid2))
|
||||
allocate(u2b_r12(n_grid2))
|
||||
allocate(gradx1_u2b(n_grid2))
|
||||
allocate(grady1_u2b(n_grid2))
|
||||
allocate(gradz1_u2b(n_grid2))
|
||||
|
||||
v1b_r1 = j1b_nucl(r1)
|
||||
call grad1_j1b_nucl(r1, grad1_v1b)
|
||||
|
||||
call j1b_nucl_r1_seq(n_grid2, v1b_r2)
|
||||
call j12_mu_r1_seq(r1, n_grid2, u2b_r12)
|
||||
call grad1_j12_mu_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid
|
||||
resx(jpoint) = (gradx1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(1)) * v1b_r2(jpoint)
|
||||
resy(jpoint) = (grady1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(2)) * v1b_r2(jpoint)
|
||||
resz(jpoint) = (gradz1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(3)) * v1b_r2(jpoint)
|
||||
res (jpoint) = resx(jpoint) * resx(jpoint) &
|
||||
+ resy(jpoint) * resy(jpoint) &
|
||||
+ resz(jpoint) * resz(jpoint)
|
||||
enddo
|
||||
|
||||
deallocate(v1b_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine get_grad1_u12_withsq_r1_seq
|
||||
|
||||
! ---
|
||||
|
||||
subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! gradient of j(mu(r1,r2),r12) form of jastrow.
|
||||
!
|
||||
! if mu(r1,r2) = cst ---> j1b_type < 200 and
|
||||
!
|
||||
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
|
||||
!
|
||||
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
integer , intent(in) :: n_grid2
|
||||
double precision, intent(in) :: r1(3)
|
||||
double precision, intent(out) :: gradx(n_grid2)
|
||||
double precision, intent(out) :: grady(n_grid2)
|
||||
double precision, intent(out) :: gradz(n_grid2)
|
||||
|
||||
integer :: jpoint
|
||||
double precision :: r2(3)
|
||||
double precision :: dx, dy, dz, r12, tmp
|
||||
|
||||
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
|
||||
|
||||
gradx(jpoint) = tmp * dx
|
||||
grady(jpoint) = tmp * dy
|
||||
gradz(jpoint) = tmp * dz
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
|
||||
|
||||
double precision :: mu_val, mu_tmp, mu_der(3)
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
dx = r1(1) - r2(1)
|
||||
dy = r1(2) - r2(2)
|
||||
dz = r1(3) - r2(3)
|
||||
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
|
||||
|
||||
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_tmp = mu_val * r12
|
||||
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
|
||||
gradx(jpoint) = tmp * mu_der(1)
|
||||
grady(jpoint) = tmp * mu_der(2)
|
||||
gradz(jpoint) = tmp * mu_der(3)
|
||||
|
||||
if(r12 .lt. 1d-10) then
|
||||
gradx(jpoint) = 0.d0
|
||||
grady(jpoint) = 0.d0
|
||||
gradz(jpoint) = 0.d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
|
||||
|
||||
gradx(jpoint) = gradx(jpoint) + tmp * dx
|
||||
grady(jpoint) = grady(jpoint) + tmp * dy
|
||||
gradz(jpoint) = gradz(jpoint) + tmp * dz
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine grad1_j12_mu_r1_seq
|
||||
|
||||
! ---
|
||||
|
||||
subroutine j12_mu_r1_seq(r1, n_grid2, res)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_grid2
|
||||
double precision, intent(in) :: r1(3)
|
||||
double precision, intent(out) :: res(n_grid2)
|
||||
|
||||
integer :: jpoint
|
||||
double precision :: r2(3)
|
||||
double precision :: mu_tmp, r12
|
||||
|
||||
PROVIDE final_grid_points_extra
|
||||
|
||||
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
|
||||
r2(1) = final_grid_points_extra(1,jpoint)
|
||||
r2(2) = final_grid_points_extra(2,jpoint)
|
||||
r2(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
|
||||
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
|
||||
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
|
||||
mu_tmp = mu_erf * r12
|
||||
|
||||
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu_r1_seq'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine j12_mu_r1_seq
|
||||
|
||||
! ---
|
||||
|
||||
subroutine j1b_nucl_r1_seq(n_grid2, res)
|
||||
|
||||
! TODO
|
||||
! change loops order
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: n_grid2
|
||||
double precision, intent(out) :: res(n_grid2)
|
||||
|
||||
double precision :: r(3)
|
||||
integer :: i, jpoint
|
||||
double precision :: a, d, e, x, y, z
|
||||
|
||||
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
|
||||
|
||||
res = 1.d0
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r(1) = final_grid_points_extra(1,jpoint)
|
||||
r(2) = final_grid_points_extra(2,jpoint)
|
||||
r(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
|
||||
res(jpoint) -= dexp(-a*dsqrt(d))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
res = 1.d0
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r(1) = final_grid_points_extra(1,jpoint)
|
||||
r(2) = final_grid_points_extra(2,jpoint)
|
||||
r(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
e = 1.d0 - dexp(-a*d)
|
||||
|
||||
res(jpoint) *= e
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
res = 1.d0
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r(1) = final_grid_points_extra(1,jpoint)
|
||||
r(2) = final_grid_points_extra(2,jpoint)
|
||||
r(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
|
||||
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
|
||||
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
|
||||
res(jpoint) -= j1b_pen_coef(i) * dexp(-a*d)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
|
||||
|
||||
res = 1.d0
|
||||
|
||||
do jpoint = 1, n_points_extra_final_grid ! r2
|
||||
r(1) = final_grid_points_extra(1,jpoint)
|
||||
r(2) = final_grid_points_extra(2,jpoint)
|
||||
r(3) = final_grid_points_extra(3,jpoint)
|
||||
|
||||
do i = 1, nucl_num
|
||||
a = j1b_pen(i)
|
||||
x = r(1) - nucl_coord(i,1)
|
||||
y = r(2) - nucl_coord(i,2)
|
||||
z = r(3) - nucl_coord(i,3)
|
||||
d = x*x + y*y + z*z
|
||||
res(jpoint) -= dexp(-a*d*d)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_r1_seq'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end subroutine j1b_nucl_r1_seq
|
||||
|
||||
! ---
|
||||
|
@ -1,530 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_final_grid, 3)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! TODO
|
||||
! combine with int2_grad1_u12_square_ao to avoid repeated calculation ?
|
||||
!
|
||||
! int2_grad1_u12_ao(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
|
||||
!
|
||||
! where r1 = r(ipoint)
|
||||
!
|
||||
! if J(r1,r2) = u12 (j1b_type .eq. 1)
|
||||
!
|
||||
! int2_grad1_u12_ao(i,j,ipoint,:) = 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r2) \phi_j(r2)
|
||||
! = 0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint |