mirror of
https://gitlab.com/scemama/eplf
synced 2024-11-13 01:23:58 +01:00
222 lines
8.8 KiB
Plaintext
222 lines
8.8 KiB
Plaintext
@section QMC Formulation
|
|
The EPLF@footnote{``Electron pair localization function, a practical tool to visualize electron
|
|
localization in molecules from quantum Monte Carlo data'', A. Scemama, P. Chaquin and M. Caffarel,
|
|
@i{J. Chem. Phys.} @b{121}, 1725-1735 (2004).
|
|
}
|
|
has been designed to describe local electron pairing in molecular
|
|
systems. It is defined as a scalar function defined in the three-dimensional
|
|
space and taking its values in the [-1,1] range. It is defined as follows:
|
|
|
|
@tex
|
|
$$
|
|
{\rm EPLF}(\vec{r}) = { d_{\sigma \sigma} (\vec{r}) - d_{\sigma {\bar \sigma}} (\vec{r}) \over d_{\sigma \sigma} (\vec{r}) + d_{\sigma {\bar \sigma}}
|
|
(\vec{r})}
|
|
$$
|
|
@end tex
|
|
where the quantity @math{ d_{\sigma \sigma} (\vec{r}) } [@math{resp. d_{\sigma
|
|
\bar \sigma} (\vec{r})} ] denotes the quantum-mechanical average of the
|
|
distance between an electron of spin @math{\sigma} located at @math{\vec r} and the closest
|
|
electron of same spin (resp., of opposite spin @math{\bar\sigma}).
|
|
|
|
The mathematical definition of these quantities can be written as
|
|
@tex
|
|
$$
|
|
d_{\sigma \sigma}(\vec{r}) = \int \Psi^2(\vec{r}_1,\dots,\vec{r_N}) \left[
|
|
\sum_{i=1}^N \delta(\vec{r}-\vec{r}_i) \min_{j\neq
|
|
i;\sigma_j=\sigma_i}|\vec{r}_i - \vec{r}_j| \right] d\vec{r}_1 \dots d\vec{r}_N
|
|
$$
|
|
|
|
$$
|
|
d_{\sigma {\bar \sigma}}(\vec{r}) = \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N)
|
|
\left[ \sum_{i=1}^N \delta(\vec{r}-\vec{r}_i) \min_{j\ne
|
|
i;\sigma_j\neq\sigma_i}|\vec{r}_i - \vec{r}_j| \right] d\vec{r}_1 \dots
|
|
d\vec{r}_N
|
|
$$
|
|
@end tex
|
|
where @math{\sigma} is the spin (\alpha or \beta), @math{\bar \sigma} is the
|
|
spin opposite to @math{\sigma} @math{\Psi(\vec{r}_1,\dots,\vec{r}_N)} is the
|
|
wave function, and @math{N} is the number of electrons.
|
|
|
|
In a region of space, if the shortest distance separating anti-parallel
|
|
electrons is smaller than the shortest distance separating electrons of same
|
|
spin, the EPLF takes positive values and indicates pairing of anti-parallel
|
|
electrons. In contrast, if the shortest distance separating anti-parallel
|
|
electrons is larger than the shortest distance separating electrons of same
|
|
spin, the EPLF takes negative values and indicates pairing of parallel
|
|
electrons (which in practice never happens). If the shortest distance
|
|
separating anti-parallel electrons is equivalent to the shortest distance
|
|
separating electrons of same spin, the EPLF takes values close to zero and
|
|
indicates no electron pairing.
|
|
|
|
The original formulation of EPLF is extremely easy to compute in the quantum
|
|
Monte Carlo framework. However, it is not possible to compute it analytically
|
|
due to the presence of the min function in the definitions of @math{d_{\sigma
|
|
\sigma}} and @math{d_{\sigma \bar \sigma}} .
|
|
|
|
@section Analytical Formulation
|
|
|
|
@subsection The EPLF operator
|
|
|
|
To evaluate exactly the average of the min function is not possible. We
|
|
proposed@footnote{``Structural and optical properties of a neutral Nickel bisdithiolene
|
|
complex. Density Functional versus ab-initio methods.'', F. Alary, J.-L.
|
|
Heully, A. Scemama, B. Garreau-de-Bonneval, K. I. Chane-Ching and M. Caffarel,
|
|
@i{Theoretical Chemistry Accounts}, DOI: 10.1007/s00214-009-0679-9}
|
|
to introduce a representation of this function in terms of gaussians
|
|
and to construct our @math{d}-functions in a slightly different way so that the
|
|
gaussian contributions can be exactly integrated out. The representation of the
|
|
min function we are considering here is written as
|
|
@tex
|
|
$$
|
|
\min_{j\neq i} |\vec{r}_i - \vec{r}_j| = \lim_{\gamma \rightarrow \infty}
|
|
\sqrt{ -{1 \over \gamma} \ln ( \sum_{j \neq i} e^{ -\gamma |\vec{r}_i -
|
|
\vec{r}_j|^2 } ) }
|
|
$$
|
|
@end tex
|
|
and we propose to define the new modified average-distances as
|
|
@tex
|
|
$$
|
|
d_{\sigma \sigma}(\vec{r}) \sim \lim_{\gamma \rightarrow \infty}
|
|
\sqrt{-{1 \over \gamma} \ln \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N)
|
|
\sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i) \sum_{j \neq i ; \sigma_i =
|
|
\sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } d\vec{r}_1 \dots
|
|
d\vec{r}_N}
|
|
$$
|
|
|
|
$$
|
|
d_{\sigma \bar{\sigma}} (\vec{r}) \sim \lim_{\gamma \rightarrow \infty}
|
|
\sqrt{-{1\over \gamma} \ln \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N)
|
|
\sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i) \sum_{j\neq i ; \sigma_i \neq
|
|
\sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } d\vec{r}_1 \dots
|
|
d\vec{r}_N} $$
|
|
@end tex
|
|
|
|
Note that these new definitions of the average-distances are different from the
|
|
previous ones essentially because @math{\ln \langle X \rangle \neq \langle \ln
|
|
X\rangle} where @math{X} denotes the sum @math{\sum_{j} e^{ -\gamma |\vec{r} -
|
|
\vec{r}_j|^2 }} and the symbol @math{\langle\dots\rangle} denotes the quantum
|
|
average. Remark that the equality is almost reached when the
|
|
fluctuations of @math{X} are small. In our applications it seems that we are
|
|
not too far from this regime and we have thus systematically observed that both
|
|
definitions of the @math{d}-functions lead to similar EPLF landscapes.
|
|
|
|
Now, introducing
|
|
@tex
|
|
$$
|
|
f_{\sigma\sigma}^\gamma(\vec{r}) = \sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i)
|
|
\sum_{j\ne i ; \sigma_i = \sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 }
|
|
$$
|
|
|
|
$$
|
|
f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) = \sum_{i=1}^{N}
|
|
\delta(\vec{r}-\vec{r}_i) \sum_{j ; \sigma_i \neq \sigma_j}^{N} e^{ -\gamma
|
|
|\vec{r}_i - \vec{r}_j|^2 } $$
|
|
@end tex
|
|
we obtain
|
|
@tex
|
|
$$
|
|
{\rm EPLF}(\vec{r}) = {\sqrt{-{1\over \gamma} \ln \langle \Psi |
|
|
f_{\sigma\sigma}^\gamma(\vec{r}) | \Psi \rangle} - \sqrt{-{1\over \gamma} \ln
|
|
\langle \Psi | f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle} \over
|
|
\sqrt{-{1\over \gamma} \ln \langle \Psi | f_{\sigma\sigma}^\gamma(\vec{r}) |
|
|
\Psi \rangle} + \sqrt{-{1\over \gamma} \ln \langle \Psi |
|
|
f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle}}
|
|
$$
|
|
@end tex
|
|
|
|
@subsection Single determinant wave functions
|
|
|
|
@tex
|
|
$$
|
|
\Psi(r_1,\dots,r_N) = D_0 = |\phi_1,\dots,\phi_N|
|
|
$$
|
|
|
|
$$
|
|
\langle \Psi | f_{\sigma\sigma}^\gamma(\vec{r}) | \Psi \rangle = \sum_{\sigma =
|
|
\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j\ne i}^{N_\sigma} \int
|
|
\phi_i(\vec{r}) \phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
|
|
\phi_i(\vec{r}) \phi_j(\vec{r'}) d\vec{r'}
|
|
$$
|
|
$$
|
|
- \int \phi_i(\vec{r})
|
|
\phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2} \phi_j(\vec{r})
|
|
\phi_i(\vec{r'}) d\vec{r'}
|
|
$$
|
|
|
|
$$
|
|
\langle \Psi | f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle =
|
|
\sum_{\sigma=\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j=1}^{N_{\bar \sigma}}
|
|
\int \phi_i(\vec{r}) \phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
|
|
\phi_i(\vec{r}) \phi_j(\vec{r'}) d\vec{r'}
|
|
$$
|
|
@end tex
|
|
|
|
@section Multi-determinant wave functions
|
|
|
|
@tex
|
|
$$
|
|
\Psi = \sum_k c_k D_k
|
|
$$
|
|
$$
|
|
\langle \Psi | f(\vec{r}) | \Psi \rangle = \sum_k \sum_l c_k c_l \langle D_k |
|
|
f(\vec{r}) | D_l \rangle $$
|
|
$$
|
|
\langle D_k | f_{\sigma\sigma}^\gamma(\vec{r}) | D_l \rangle = \sum_{\sigma =
|
|
\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j\ne i}^{N_\sigma} \int
|
|
\phi^k_i(\vec{r}) \phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
|
|
\phi^l_i(\vec{r}) \phi^l_j(\vec{r'}) d\vec{r'}
|
|
$$
|
|
$$
|
|
- \int \phi^k_i(\vec{r})
|
|
\phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2} \phi^l_j(\vec{r})
|
|
\phi^l_i(\vec{r'}) d\vec{r'} $$
|
|
$$
|
|
\langle D_k | f_{\sigma\bar \sigma}^\gamma(\vec{r}) | D_l \rangle =
|
|
\sum_{\sigma=\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j=1}^{N_{\bar \sigma}}
|
|
\int \phi^k_i(\vec{r}) \phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
|
|
\phi^l_i(\vec{r}) \phi^l_j(\vec{r'}) d\vec{r'} $$
|
|
@end tex
|
|
|
|
@subsection Expression of the gamma parameter
|
|
|
|
In our definition of the modified EPLF the parameter @math{\gamma} is supposed to be (very)
|
|
large. In practice, if it is chosen too small, the integrals @math{\langle \Psi |
|
|
f_{\sigma{\bar \sigma}}^\gamma(\vec{r}) | \Psi \rangle} can take values larger
|
|
than 1 in regions of high density, giving a negative value for the shortest
|
|
average distance. If it is chosen too large numerical instabilities appear
|
|
since the values of the integrals become extremely small. We propose to use a
|
|
value of @math{\gamma} which depends on the electron density @math{\rho(\vec{r})} as:
|
|
@tex
|
|
$$
|
|
\gamma(\vec{r}) = (-\ln \epsilon) \left( {1\over N}{4\over 3}\pi \rho(\vec{r}) \right)^{2/3}
|
|
$$
|
|
@end tex
|
|
where @math{\epsilon} is the smallest possible floating point number that can
|
|
be represented with 64 bits (@math{\sim 2.10^{-308}}). The reason for this
|
|
choice is the following.
|
|
The largest possible value of the approximate shortest distance can be computed as
|
|
@tex
|
|
$$
|
|
d_{\rm max} = \sqrt{-{1 \over \gamma} \ln \epsilon}
|
|
$$
|
|
@end tex
|
|
If the density is conidered constant in a sphere of radius @math{d_{\rm max}}, the number
|
|
@math{N} of electrons contained in the sphere is
|
|
@tex
|
|
$$
|
|
N = {4\over 3} \pi d_{\rm max}^3 \rho(r)
|
|
$$
|
|
@end tex
|
|
The maximum possible distance can be parametrized by a target constant number @math{N}
|
|
of electrons in the sphere
|
|
@tex
|
|
$$
|
|
d_{\rm max}(r) = \left( {1\over N} {4\over 3} \pi \rho(r) \right)^{-1/3}
|
|
$$
|
|
@end tex
|
|
|
|
If @math{N} is chosen small enough (0.01 electron), the value of
|
|
@math{\langle \Psi | f(r) | \Psi \rangle} is very unlikely to exceed 1, and the
|
|
value of @math{\gamma} will also be sufficiently large in the valence regions.
|
|
|