eplf/src/eplf_function.irp.f

404 lines
10 KiB
Fortran

BEGIN_PROVIDER [ real, eplf_gamma ]
implicit none
BEGIN_DOC
! Value of the gaussian for the EPLF
END_DOC
real :: eps
eps = -real(dlog(tiny(1.d0)))
eplf_gamma = density_p**(2./3.) * 100.*eps
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_eplf_integral_matrix, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Array of all the <chi_i chi_j | exp(-gamma r^2)> for EPLF
END_DOC
integer :: i, j
double precision :: ao_eplf_integral
do i=1,ao_num
do j=i,ao_num
ao_eplf_integral_matrix(j,i) = ao_eplf_integral(j,i,eplf_gamma,point)
ao_eplf_integral_matrix(i,j) = ao_eplf_integral_matrix(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_eplf_integral_matrix, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Array of all the <chi_i chi_j | exp(-gamma r^2)> for EPLF
END_DOC
integer :: i, j, k, l
double precision :: t
PROVIDE ao_eplf_integral_matrix
PROVIDE mo_coef
do i=1,mo_num
do j=i,mo_num
mo_eplf_integral_matrix(j,i) = 0.
enddo
do k=1,ao_num
if (abs(mo_coef(k,i)) /= 0.) then
do l=1,ao_num
t = mo_coef(k,i)*ao_eplf_integral_matrix(l,k)
if (abs(ao_eplf_integral_matrix(l,k))>1.d-16) then
do j=i,mo_num
mo_eplf_integral_matrix(j,i) = mo_eplf_integral_matrix(j,i) + &
t*mo_coef_transp(j,l)
enddo
endif
enddo
endif
enddo
enddo
do i=1,mo_num
do j=i+1,mo_num
mo_eplf_integral_matrix(i,j) = mo_eplf_integral_matrix(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, eplf_up_up ]
&BEGIN_PROVIDER [ double precision, eplf_up_dn ]
implicit none
BEGIN_DOC
! Value of the d_upup and d_updn quantities needed for EPLF
END_DOC
integer :: i, j, k, l, m, n
double precision :: thr
thr = 1.d-12 / eplf_gamma
eplf_up_up = 0.
eplf_up_dn = 0.
PROVIDE mo_coef_transp
do j=1,elec_beta_num
do i=1,elec_beta_num
eplf_up_up = eplf_up_up + 2.d0*mo_value_p(i)* ( &
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
enddo
do i=elec_beta_num+1,elec_alpha_num
eplf_up_up = eplf_up_up + mo_value_p(i)* ( &
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
enddo
enddo
do j=elec_beta_num+1,elec_alpha_num
do i=1,elec_alpha_num
eplf_up_up = eplf_up_up + mo_value_p(i)* ( &
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
enddo
enddo
do j=1,elec_beta_num
do i=1,elec_alpha_num
eplf_up_dn = eplf_up_dn + mo_value_p(i)**2 * &
mo_eplf_integral_matrix(j,j)
enddo
enddo
eplf_up_dn = 2.d0*eplf_up_dn
END_PROVIDER
BEGIN_PROVIDER [ real, eplf_value ]
implicit none
BEGIN_DOC
! Value of the EPLF at the current point.
END_DOC
double precision :: aa, ab
double precision, parameter :: eps = tiny(1.d0)
aa = eplf_up_up
ab = eplf_up_dn
if ( (aa > 0.d0).and.(ab > 0.d0) ) then
aa = min(1.d0,aa)
ab = min(1.d0,ab)
aa = -(dlog(aa)/eplf_gamma)
ab = -(dlog(ab)/eplf_gamma)
aa = dsqrt(aa)
ab = dsqrt(ab)
eplf_value = (aa-ab)/(aa+ab+eps)
else
eplf_value = 0.d0
endif
END_PROVIDER
double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer,parameter :: Npoints=10000
real :: x, xmin, xmax, dx
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
xmin = min(xa,xb)
xmax = max(xa,xb)
xmin = min(xmin,xr) - 10.
xmax = max(xmax,xr) + 10.
dx = (xmax-xmin)/real(Npoints)
real :: dtemp
dtemp = 0.
x = xmin
integer :: k
do k=1,Npoints
dtemp = dtemp + &
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
x = x+dx
enddo
ao_eplf_integral_primitive_oneD_numeric = dtemp*dx
end function
double precision function ao_eplf_integral_numeric(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral
double precision :: ao_eplf_integral_primitive_oneD_numeric
real :: gmma, center(3), c
ao_eplf_integral_numeric = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
c = ao_coef(p,i)*ao_coef(q,j)
integral = &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1), &
gmma, &
center(1)) * &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2), &
gmma, &
center(2)) * &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3), &
gmma, &
center(3))
ao_eplf_integral_numeric = ao_eplf_integral_numeric + c*integral
enddo
enddo
end function
double precision function ao_eplf_integral_primitive_oneD2(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
real :: xp1,xp
real :: p1,p
double precision :: S(0:i+1,0:j+1)
double precision :: inv_p, di(max(i,j)), dj(j), c, c1
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
! Gaussian product
call gaussian_product(a,xa,b,xb,c1,p1,xp1)
call gaussian_product(p1,xp1,gmma,xr,c,p,xp)
inv_p = 1.d0/p
S(0,0) = dsqrt(pi*inv_p)*c*c1
! Obara-Saika recursion
do ii=1,max(i,j)
di(ii) = 0.5d0*inv_p*dble(ii)
enddo
S(1,0) = (xp-xa) * S(0,0)
if (i>1) then
do ii=1,i-1
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
S(0,1) = (xp-xb) * S(0,0)
if (j>1) then
do jj=1,j-1
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
enddo
endif
do jj=1,j
S(1,jj) = (xp-xa) * S(0,jj) + di(jj) * S(0,jj-1)
do ii=2,i
S(ii,jj) = (xp-xa) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
enddo
enddo
ao_eplf_integral_primitive_oneD2 = S(i,j)
end function
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
real :: xp1,xp
real :: p1,p
double precision :: S00, xpa, xpb
double precision :: inv_p,c,c1
double precision :: ObaraS
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
! Gaussian product
call gaussian_product(a,xa,b,xb,c1,p1,xp1)
call gaussian_product(p1,xp1,gmma,xr,c,p,xp)
inv_p = 1.d0/p
S00 = dsqrt(pi*inv_p)*c*c1
xpa = xp-xa
xpb = xp-xb
ao_eplf_integral_primitive_oneD = ObaraS(i,j,xpa,xpb,inv_p,S00)
end function
recursive double precision function ObaraS(i,j,xpa,xpb,inv_p,S00) result(res)
implicit none
integer, intent(in) :: i, j
double precision, intent(in) :: xpa, xpb, inv_p
double precision,intent(in) :: S00
if (i == 0) then
if (j == 0) then
res = S00
else ! (j>0)
res = xpb*ObaraS(0,j-1,xpa,xpb,inv_p,S00)
if (j>1) then
res = res + 0.5d0*dble(j-1)*inv_p*ObaraS(0,j-2,xpa,xpb,inv_p,S00)
endif
endif ! (i==0).and.(j>0)
else ! (i>0)
if (j==0) then
res = xpa*ObaraS(i-1,0,xpa,xpb,inv_p,S00)
if (i>1) then
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,0,xpa,xpb,inv_p,S00)
endif
else ! (i>0).and.(j>0)
res = xpa * ObaraS(i-1,j,xpa,xpb,inv_p,S00)
if (i>1) then
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,j,xpa,xpb,inv_p,S00)
endif
res = res + 0.5d0*dble(j)*inv_p*ObaraS(i-1,j-1,xpa,xpb,inv_p,S00)
endif ! (i>0).and.(j>0)
endif ! (i>0)
end function
double precision function ao_eplf_integral(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral
double precision :: ao_eplf_integral_primitive_oneD
real :: gmma, center(3)
ASSERT(i>0)
ASSERT(j>0)
ASSERT(i<=ao_num)
ASSERT(j<=ao_num)
ao_eplf_integral = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral = &
ao_eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1), &
gmma, &
center(1)) * &
ao_eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2), &
gmma, &
center(2)) * &
ao_eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3), &
gmma, &
center(3))
ao_eplf_integral = ao_eplf_integral + integral*ao_coef(p,i)*ao_coef(q,j)
enddo
enddo
end function
double precision function mo_eplf_integral(i,j)
implicit none
integer :: i, j, k, l
PROVIDE ao_eplf_integral_matrix
PROVIDE mo_coef
mo_eplf_integral = 0.d0
do k=1,ao_num
if (mo_coef(k,i) /= 0.) then
do l=1,ao_num
mo_eplf_integral = mo_eplf_integral + &
mo_coef(k,i)*mo_coef(l,j)*ao_eplf_integral_matrix(k,l)
enddo
endif
enddo
end function