mirror of
https://gitlab.com/scemama/eplf
synced 2024-10-31 19:23:55 +01:00
Improved eplf function
This commit is contained in:
parent
0e1c2f74a9
commit
e9733253c3
@ -21,7 +21,7 @@ BEGIN_PROVIDER [ double precision, ao_eplf_integral_matrix, (ao_num,ao_num) ]
|
||||
double precision :: ao_eplf_integral
|
||||
do i=1,ao_num
|
||||
do j=i,ao_num
|
||||
ao_eplf_integral_matrix(j,i) = ao_eplf_integral(j,i,eplf_gamma,point)
|
||||
ao_eplf_integral_matrix(j,i) = ao_eplf_integral(j,i,dble(eplf_gamma),point)
|
||||
ao_eplf_integral_matrix(i,j) = ao_eplf_integral_matrix(j,i)
|
||||
enddo
|
||||
enddo
|
||||
@ -237,8 +237,8 @@ BEGIN_PROVIDER [ real, eplf_value_p ]
|
||||
if ( (aa > 0.d0).and.(ab > 0.d0) ) then
|
||||
aa = min(1.d0,aa)
|
||||
ab = min(1.d0,ab)
|
||||
aa = -dlog(aa)/eplf_gamma
|
||||
ab = -dlog(ab)/eplf_gamma
|
||||
aa = -dlog(aa)
|
||||
ab = -dlog(ab)
|
||||
aa = dsqrt(aa)
|
||||
ab = dsqrt(ab)
|
||||
eplf_value_p = (aa-ab)/(aa+ab+eps)
|
||||
@ -249,93 +249,94 @@ BEGIN_PROVIDER [ real, eplf_value_p ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
|
||||
implicit none
|
||||
include 'constants.F'
|
||||
|
||||
real, intent(in) :: a,b,gmma ! Exponents
|
||||
real, intent(in) :: xa,xb,xr ! Centers
|
||||
integer, intent(in) :: i,j ! Powers of xa and xb
|
||||
integer,parameter :: Npoints=10000
|
||||
real :: x, xmin, xmax, dx
|
||||
|
||||
ASSERT (a>0.)
|
||||
ASSERT (b>0.)
|
||||
ASSERT (i>=0)
|
||||
ASSERT (j>=0)
|
||||
|
||||
xmin = min(xa,xb)
|
||||
xmax = max(xa,xb)
|
||||
xmin = min(xmin,xr) - 10.
|
||||
xmax = max(xmax,xr) + 10.
|
||||
dx = (xmax-xmin)/real(Npoints)
|
||||
|
||||
real :: dtemp
|
||||
dtemp = 0.
|
||||
x = xmin
|
||||
integer :: k
|
||||
do k=1,Npoints
|
||||
dtemp += &
|
||||
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
|
||||
x = x+dx
|
||||
enddo
|
||||
ao_eplf_integral_primitive_oneD_numeric = dtemp*dx
|
||||
|
||||
end function
|
||||
|
||||
double precision function ao_eplf_integral_numeric(i,j,gmma,center)
|
||||
implicit none
|
||||
integer, intent(in) :: i, j
|
||||
integer :: p,q,k
|
||||
double precision :: integral
|
||||
double precision :: ao_eplf_integral_primitive_oneD_numeric
|
||||
real :: gmma, center(3), c
|
||||
|
||||
|
||||
ao_eplf_integral_numeric = 0.d0
|
||||
do q=1,ao_prim_num(j)
|
||||
do p=1,ao_prim_num(i)
|
||||
c = ao_coef(i,p)*ao_coef(j,q)
|
||||
integral = &
|
||||
ao_eplf_integral_primitive_oneD_numeric( &
|
||||
ao_expo(i,p), &
|
||||
nucl_coord(ao_nucl(i),1), &
|
||||
ao_power(i,1), &
|
||||
ao_expo(j,q), &
|
||||
nucl_coord(ao_nucl(j),1), &
|
||||
ao_power(j,1), &
|
||||
gmma, &
|
||||
center(1)) * &
|
||||
ao_eplf_integral_primitive_oneD_numeric( &
|
||||
ao_expo(i,p), &
|
||||
nucl_coord(ao_nucl(i),2), &
|
||||
ao_power(i,2), &
|
||||
ao_expo(j,q), &
|
||||
nucl_coord(ao_nucl(j),2), &
|
||||
ao_power(j,2), &
|
||||
gmma, &
|
||||
center(2)) * &
|
||||
ao_eplf_integral_primitive_oneD_numeric( &
|
||||
ao_expo(i,p), &
|
||||
nucl_coord(ao_nucl(i),3), &
|
||||
ao_power(i,3), &
|
||||
ao_expo(j,q), &
|
||||
nucl_coord(ao_nucl(j),3), &
|
||||
ao_power(j,3), &
|
||||
gmma, &
|
||||
center(3))
|
||||
ao_eplf_integral_numeric = ao_eplf_integral_numeric + c*integral
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end function
|
||||
!double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
|
||||
! implicit none
|
||||
! include 'constants.F'
|
||||
!
|
||||
! real, intent(in) :: a,b,gmma ! Exponents
|
||||
! real, intent(in) :: xa,xb,xr ! Centers
|
||||
! integer, intent(in) :: i,j ! Powers of xa and xb
|
||||
! integer,parameter :: Npoints=10000
|
||||
! real :: x, xmin, xmax, dx
|
||||
!
|
||||
! ASSERT (a>0.)
|
||||
! ASSERT (b>0.)
|
||||
! ASSERT (i>=0)
|
||||
! ASSERT (j>=0)
|
||||
!
|
||||
! xmin = min(xa,xb)
|
||||
! xmax = max(xa,xb)
|
||||
! xmin = min(xmin,xr) - 10.
|
||||
! xmax = max(xmax,xr) + 10.
|
||||
! dx = (xmax-xmin)/real(Npoints)
|
||||
!
|
||||
! real :: dtemp
|
||||
! dtemp = 0.
|
||||
! x = xmin
|
||||
! integer :: k
|
||||
! do k=1,Npoints
|
||||
! dtemp += &
|
||||
! (x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
|
||||
! x = x+dx
|
||||
! enddo
|
||||
! ao_eplf_integral_primitive_oneD_numeric = dtemp*dx
|
||||
!
|
||||
!end function
|
||||
!
|
||||
!double precision function ao_eplf_integral_numeric(i,j,gmma,center)
|
||||
! implicit none
|
||||
! integer, intent(in) :: i, j
|
||||
! integer :: p,q,k
|
||||
! double precision :: integral
|
||||
! double precision :: ao_eplf_integral_primitive_oneD_numeric
|
||||
! real :: gmma, center(3), c
|
||||
!
|
||||
!
|
||||
! ao_eplf_integral_numeric = 0.d0
|
||||
! do q=1,ao_prim_num(j)
|
||||
! do p=1,ao_prim_num(i)
|
||||
! c = ao_coef(i,p)*ao_coef(j,q)
|
||||
! integral = &
|
||||
! ao_eplf_integral_primitive_oneD_numeric( &
|
||||
! ao_expo(i,p), &
|
||||
! nucl_coord(ao_nucl(i),1), &
|
||||
! ao_power(i,1), &
|
||||
! ao_expo(j,q), &
|
||||
! nucl_coord(ao_nucl(j),1), &
|
||||
! ao_power(j,1), &
|
||||
! gmma, &
|
||||
! center(1)) * &
|
||||
! ao_eplf_integral_primitive_oneD_numeric( &
|
||||
! ao_expo(i,p), &
|
||||
! nucl_coord(ao_nucl(i),2), &
|
||||
! ao_power(i,2), &
|
||||
! ao_expo(j,q), &
|
||||
! nucl_coord(ao_nucl(j),2), &
|
||||
! ao_power(j,2), &
|
||||
! gmma, &
|
||||
! center(2)) * &
|
||||
! ao_eplf_integral_primitive_oneD_numeric( &
|
||||
! ao_expo(i,p), &
|
||||
! nucl_coord(ao_nucl(i),3), &
|
||||
! ao_power(i,3), &
|
||||
! ao_expo(j,q), &
|
||||
! nucl_coord(ao_nucl(j),3), &
|
||||
! ao_power(j,3), &
|
||||
! gmma, &
|
||||
! center(3))
|
||||
! ao_eplf_integral_numeric = ao_eplf_integral_numeric + c*integral
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
!end function
|
||||
|
||||
|
||||
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
implicit none
|
||||
include 'constants.F'
|
||||
|
||||
real, intent(in) :: a,b,gmma ! Exponents
|
||||
real, intent(in) :: a,b ! Exponents
|
||||
double precision , intent(in) :: gmma ! eplf_gamma
|
||||
real, intent(in) :: xa,xb,xr ! Centers
|
||||
integer, intent(in) :: i,j ! Powers of xa and xb
|
||||
integer :: ii, jj, kk, ll
|
||||
@ -350,31 +351,36 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
ASSERT (j>=0)
|
||||
|
||||
! Gaussian product
|
||||
! Inlined Gaussian products (same as call gaussian_product)
|
||||
real :: t(2), xab(2), ab(2)
|
||||
inv_p(1) = 1.d0/(a+b)
|
||||
p1 = a+b
|
||||
ab(1) = a*b
|
||||
inv_p(2) = 1.d0/(p1+gmma)
|
||||
t(1) = (a*xa+b*xb)
|
||||
xab(1) = xa-xb
|
||||
xp1 = t(1)*inv_p(1)
|
||||
p = p1+gmma
|
||||
ab(2) = p1*gmma
|
||||
t(2) = (p1*xp1+gmma*xr)
|
||||
xab(2) = xp1-xr
|
||||
xp = t(2)*inv_p(2)
|
||||
c = real(ab(1)*inv_p(1)*xab(1)**2 + &
|
||||
ab(2)*inv_p(2)*xab(2)**2)
|
||||
if ( c > 32.d0 ) then
|
||||
ao_eplf_integral_primitive_oneD = 0.d0
|
||||
return
|
||||
endif
|
||||
c = exp(-c)
|
||||
!S(0,0) = dsqrt(pi*inv_p(2))*c
|
||||
S(0,0) = 1.d0 ! Factor is applied at the end
|
||||
real :: t(2), xab(2), ab(2)
|
||||
inv_p(1) = 1.d0/(a+b)
|
||||
p1 = a+b
|
||||
ab(1) = a*b
|
||||
inv_p(2) = 1.d0/(p1+gmma)
|
||||
t(1) = (a*xa+b*xb)
|
||||
xab(1) = xa-xb
|
||||
xp1 = t(1)*inv_p(1)
|
||||
p = p1+gmma
|
||||
ab(2) = p1*gmma
|
||||
t(2) = (p1*xp1+gmma*xr)
|
||||
xab(2) = xp1-xr
|
||||
xp = t(2)*inv_p(2)
|
||||
c = dble(ab(1)*inv_p(1)*xab(1)**2 + &
|
||||
ab(2)*inv_p(2)*xab(2)**2)
|
||||
|
||||
! double precision, save :: c_accu(2)
|
||||
! c_accu(1) += c
|
||||
! c_accu(2) += 1.d0
|
||||
! print *, c_accu(1)/c_accu(2)
|
||||
|
||||
if ( c > 32.d0 ) then ! Cut-off on exp(-32)
|
||||
ao_eplf_integral_primitive_oneD = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
c = exp(-c)
|
||||
|
||||
! Obara-Saika recursion
|
||||
S(0,0) = 1.d0
|
||||
|
||||
do ii=1,max(i,j)
|
||||
di(ii) = 0.5d0*inv_p(2)*dble(ii)
|
||||
@ -382,14 +388,14 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
|
||||
xab(1) = xp-xa
|
||||
xab(2) = xp-xb
|
||||
S(1,0) = xab(1) * S(0,0)
|
||||
S(1,0) = xab(1) ! * S(0,0)
|
||||
if (i>1) then
|
||||
do ii=1,i-1
|
||||
S(ii+1,0) = xab(1) * S(ii,0) + di(ii)*S(ii-1,0)
|
||||
enddo
|
||||
endif
|
||||
|
||||
S(0,1) = xab(2) * S(0,0)
|
||||
S(0,1) = xab(2) ! * S(0,0)
|
||||
if (j>1) then
|
||||
do jj=1,j-1
|
||||
S(0,jj+1) = xab(2) * S(0,jj) + di(jj)*S(0,jj-1)
|
||||
@ -403,7 +409,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
ao_eplf_integral_primitive_oneD = dsqrt(pi*inv_p(2))*S(i,j)*c ! Application of the factor of S(0,0)
|
||||
ao_eplf_integral_primitive_oneD = dsqrt(pi*inv_p(2))*c*S(i,j)
|
||||
|
||||
end function
|
||||
|
||||
@ -412,6 +418,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
! include 'constants.F'
|
||||
!!
|
||||
! real, intent(in) :: a,b,gmma ! Exponents
|
||||
! double precision, intent(in) :: gmma
|
||||
! real, intent(in) :: xa,xb,xr ! Centers
|
||||
! integer, intent(in) :: i,j ! Powers of xa and xb
|
||||
! integer :: ii, jj, kk, ll
|
||||
@ -485,16 +492,18 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
double precision function ao_eplf_integral(i,j,gmma,center)
|
||||
implicit none
|
||||
integer, intent(in) :: i, j
|
||||
real, intent(in) :: center(3)
|
||||
double precision, intent(in) :: gmma
|
||||
!DEC$ ATTRIBUTES FORCEINLINE
|
||||
integer :: p,q,k
|
||||
double precision :: integral
|
||||
!DEC$ ATTRIBUTES FORCEINLINE
|
||||
double precision :: ao_eplf_integral_primitive_oneD
|
||||
real :: gmma, center(3)
|
||||
double precision :: buffer(100)
|
||||
|
||||
|
||||
ASSERT(i>0)
|
||||
ASSERT(j>0)
|
||||
ASSERT(ao_prim_num_max < 100)
|
||||
ASSERT(i<=ao_num)
|
||||
ASSERT(j<=ao_num)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user