10
0
mirror of https://gitlab.com/scemama/eplf synced 2024-10-31 19:23:55 +01:00

Improved eplf function

This commit is contained in:
Anthony Scemama 2010-10-06 13:27:18 +02:00
parent 0e1c2f74a9
commit e9733253c3

View File

@ -21,7 +21,7 @@ BEGIN_PROVIDER [ double precision, ao_eplf_integral_matrix, (ao_num,ao_num) ]
double precision :: ao_eplf_integral
do i=1,ao_num
do j=i,ao_num
ao_eplf_integral_matrix(j,i) = ao_eplf_integral(j,i,eplf_gamma,point)
ao_eplf_integral_matrix(j,i) = ao_eplf_integral(j,i,dble(eplf_gamma),point)
ao_eplf_integral_matrix(i,j) = ao_eplf_integral_matrix(j,i)
enddo
enddo
@ -237,8 +237,8 @@ BEGIN_PROVIDER [ real, eplf_value_p ]
if ( (aa > 0.d0).and.(ab > 0.d0) ) then
aa = min(1.d0,aa)
ab = min(1.d0,ab)
aa = -dlog(aa)/eplf_gamma
ab = -dlog(ab)/eplf_gamma
aa = -dlog(aa)
ab = -dlog(ab)
aa = dsqrt(aa)
ab = dsqrt(ab)
eplf_value_p = (aa-ab)/(aa+ab+eps)
@ -249,93 +249,94 @@ BEGIN_PROVIDER [ real, eplf_value_p ]
END_PROVIDER
double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer,parameter :: Npoints=10000
real :: x, xmin, xmax, dx
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
xmin = min(xa,xb)
xmax = max(xa,xb)
xmin = min(xmin,xr) - 10.
xmax = max(xmax,xr) + 10.
dx = (xmax-xmin)/real(Npoints)
real :: dtemp
dtemp = 0.
x = xmin
integer :: k
do k=1,Npoints
dtemp += &
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
x = x+dx
enddo
ao_eplf_integral_primitive_oneD_numeric = dtemp*dx
end function
double precision function ao_eplf_integral_numeric(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral
double precision :: ao_eplf_integral_primitive_oneD_numeric
real :: gmma, center(3), c
ao_eplf_integral_numeric = 0.d0
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
c = ao_coef(i,p)*ao_coef(j,q)
integral = &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(i,p), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(j,q), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1), &
gmma, &
center(1)) * &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(i,p), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(j,q), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2), &
gmma, &
center(2)) * &
ao_eplf_integral_primitive_oneD_numeric( &
ao_expo(i,p), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(j,q), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3), &
gmma, &
center(3))
ao_eplf_integral_numeric = ao_eplf_integral_numeric + c*integral
enddo
enddo
end function
!double precision function ao_eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
! implicit none
! include 'constants.F'
!
! real, intent(in) :: a,b,gmma ! Exponents
! real, intent(in) :: xa,xb,xr ! Centers
! integer, intent(in) :: i,j ! Powers of xa and xb
! integer,parameter :: Npoints=10000
! real :: x, xmin, xmax, dx
!
! ASSERT (a>0.)
! ASSERT (b>0.)
! ASSERT (i>=0)
! ASSERT (j>=0)
!
! xmin = min(xa,xb)
! xmax = max(xa,xb)
! xmin = min(xmin,xr) - 10.
! xmax = max(xmax,xr) + 10.
! dx = (xmax-xmin)/real(Npoints)
!
! real :: dtemp
! dtemp = 0.
! x = xmin
! integer :: k
! do k=1,Npoints
! dtemp += &
! (x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
! x = x+dx
! enddo
! ao_eplf_integral_primitive_oneD_numeric = dtemp*dx
!
!end function
!
!double precision function ao_eplf_integral_numeric(i,j,gmma,center)
! implicit none
! integer, intent(in) :: i, j
! integer :: p,q,k
! double precision :: integral
! double precision :: ao_eplf_integral_primitive_oneD_numeric
! real :: gmma, center(3), c
!
!
! ao_eplf_integral_numeric = 0.d0
! do q=1,ao_prim_num(j)
! do p=1,ao_prim_num(i)
! c = ao_coef(i,p)*ao_coef(j,q)
! integral = &
! ao_eplf_integral_primitive_oneD_numeric( &
! ao_expo(i,p), &
! nucl_coord(ao_nucl(i),1), &
! ao_power(i,1), &
! ao_expo(j,q), &
! nucl_coord(ao_nucl(j),1), &
! ao_power(j,1), &
! gmma, &
! center(1)) * &
! ao_eplf_integral_primitive_oneD_numeric( &
! ao_expo(i,p), &
! nucl_coord(ao_nucl(i),2), &
! ao_power(i,2), &
! ao_expo(j,q), &
! nucl_coord(ao_nucl(j),2), &
! ao_power(j,2), &
! gmma, &
! center(2)) * &
! ao_eplf_integral_primitive_oneD_numeric( &
! ao_expo(i,p), &
! nucl_coord(ao_nucl(i),3), &
! ao_power(i,3), &
! ao_expo(j,q), &
! nucl_coord(ao_nucl(j),3), &
! ao_power(j,3), &
! gmma, &
! center(3))
! ao_eplf_integral_numeric = ao_eplf_integral_numeric + c*integral
! enddo
! enddo
!
!end function
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: a,b ! Exponents
double precision , intent(in) :: gmma ! eplf_gamma
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
@ -350,31 +351,36 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
ASSERT (j>=0)
! Gaussian product
! Inlined Gaussian products (same as call gaussian_product)
real :: t(2), xab(2), ab(2)
inv_p(1) = 1.d0/(a+b)
p1 = a+b
ab(1) = a*b
inv_p(2) = 1.d0/(p1+gmma)
t(1) = (a*xa+b*xb)
xab(1) = xa-xb
xp1 = t(1)*inv_p(1)
p = p1+gmma
ab(2) = p1*gmma
t(2) = (p1*xp1+gmma*xr)
xab(2) = xp1-xr
xp = t(2)*inv_p(2)
c = real(ab(1)*inv_p(1)*xab(1)**2 + &
ab(2)*inv_p(2)*xab(2)**2)
if ( c > 32.d0 ) then
ao_eplf_integral_primitive_oneD = 0.d0
return
endif
c = exp(-c)
!S(0,0) = dsqrt(pi*inv_p(2))*c
S(0,0) = 1.d0 ! Factor is applied at the end
real :: t(2), xab(2), ab(2)
inv_p(1) = 1.d0/(a+b)
p1 = a+b
ab(1) = a*b
inv_p(2) = 1.d0/(p1+gmma)
t(1) = (a*xa+b*xb)
xab(1) = xa-xb
xp1 = t(1)*inv_p(1)
p = p1+gmma
ab(2) = p1*gmma
t(2) = (p1*xp1+gmma*xr)
xab(2) = xp1-xr
xp = t(2)*inv_p(2)
c = dble(ab(1)*inv_p(1)*xab(1)**2 + &
ab(2)*inv_p(2)*xab(2)**2)
! double precision, save :: c_accu(2)
! c_accu(1) += c
! c_accu(2) += 1.d0
! print *, c_accu(1)/c_accu(2)
if ( c > 32.d0 ) then ! Cut-off on exp(-32)
ao_eplf_integral_primitive_oneD = 0.d0
return
endif
c = exp(-c)
! Obara-Saika recursion
S(0,0) = 1.d0
do ii=1,max(i,j)
di(ii) = 0.5d0*inv_p(2)*dble(ii)
@ -382,14 +388,14 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
xab(1) = xp-xa
xab(2) = xp-xb
S(1,0) = xab(1) * S(0,0)
S(1,0) = xab(1) ! * S(0,0)
if (i>1) then
do ii=1,i-1
S(ii+1,0) = xab(1) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
S(0,1) = xab(2) * S(0,0)
S(0,1) = xab(2) ! * S(0,0)
if (j>1) then
do jj=1,j-1
S(0,jj+1) = xab(2) * S(0,jj) + di(jj)*S(0,jj-1)
@ -403,7 +409,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
enddo
enddo
ao_eplf_integral_primitive_oneD = dsqrt(pi*inv_p(2))*S(i,j)*c ! Application of the factor of S(0,0)
ao_eplf_integral_primitive_oneD = dsqrt(pi*inv_p(2))*c*S(i,j)
end function
@ -412,6 +418,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
! include 'constants.F'
!!
! real, intent(in) :: a,b,gmma ! Exponents
! double precision, intent(in) :: gmma
! real, intent(in) :: xa,xb,xr ! Centers
! integer, intent(in) :: i,j ! Powers of xa and xb
! integer :: ii, jj, kk, ll
@ -485,16 +492,18 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
double precision function ao_eplf_integral(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
real, intent(in) :: center(3)
double precision, intent(in) :: gmma
!DEC$ ATTRIBUTES FORCEINLINE
integer :: p,q,k
double precision :: integral
!DEC$ ATTRIBUTES FORCEINLINE
double precision :: ao_eplf_integral_primitive_oneD
real :: gmma, center(3)
double precision :: buffer(100)
ASSERT(i>0)
ASSERT(j>0)
ASSERT(ao_prim_num_max < 100)
ASSERT(i<=ao_num)
ASSERT(j<=ao_num)