mirror of
https://gitlab.com/scemama/eplf
synced 2024-10-31 19:23:55 +01:00
Slater rules seem to be OK. testing...
This commit is contained in:
parent
01ef6620cd
commit
e0ce68a4b4
@ -40,21 +40,23 @@ BEGIN_PROVIDER [ real, density_alpha_value_p ]
|
||||
! TODO vectorization
|
||||
integer :: k,j,l, ik, il
|
||||
real :: buffer
|
||||
real :: phase
|
||||
PROVIDE det
|
||||
PROVIDE elec_alpha_num
|
||||
do k=1,det_num
|
||||
do l=1,det_num
|
||||
|
||||
phase = dble(det_exc(k,l,4))
|
||||
if (det_exc(k,l,3) == 0) then
|
||||
buffer = 0.
|
||||
do i=1,elec_alpha_num-mo_closed_num
|
||||
buffer += mo_value_p(det(i,k,1))*mo_value_p(det(i,l,1))
|
||||
enddo
|
||||
density_alpha_value_p += det_coef(k)*det_coef(l)*buffer
|
||||
density_alpha_value_p += phase*det_coef(k)*det_coef(l)*buffer
|
||||
else if ( (det_exc(k,l,3) == 1).and.(det_exc(k,l,1) == 1) ) then
|
||||
call get_single_excitation(k,l,ik,il,1)
|
||||
buffer = mo_value_p(ik)*mo_value_p(il)
|
||||
density_alpha_value_p += det_coef(k)*det_coef(l)*buffer
|
||||
density_alpha_value_p += phase*det_coef(k)*det_coef(l)*buffer
|
||||
endif
|
||||
|
||||
enddo
|
||||
@ -77,20 +79,22 @@ BEGIN_PROVIDER [ real, density_beta_value_p ]
|
||||
! TODO vectorization
|
||||
integer :: k,j,l, ik, il
|
||||
real :: buffer
|
||||
real :: phase
|
||||
PROVIDE det
|
||||
PROVIDE elec_beta_num
|
||||
do k=1,det_num
|
||||
do l=1,det_num
|
||||
phase = dble(det_exc(k,l,4))
|
||||
if (det_exc(k,l,3) == 0) then
|
||||
buffer = 0.
|
||||
do i=1,elec_beta_num-mo_closed_num
|
||||
buffer += mo_value_p(det(i,k,2))*mo_value_p(det(i,l,2))
|
||||
enddo
|
||||
density_beta_value_p += det_coef(k)*det_coef(l)*buffer
|
||||
density_beta_value_p += phase*det_coef(k)*det_coef(l)*buffer
|
||||
else if ( (det_exc(k,l,3) == 1).and.(det_exc(k,l,2) == 1) ) then
|
||||
call get_single_excitation(k,l,ik,il,2)
|
||||
buffer = mo_value_p(ik)*mo_value_p(il)
|
||||
density_beta_value_p += det_coef(k)*det_coef(l)*buffer
|
||||
density_beta_value_p += phase*det_coef(k)*det_coef(l)*buffer
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
@ -33,10 +33,10 @@ BEGIN_PROVIDER [ integer, det, (elec_alpha_num-mo_closed_num,det_num,2) ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, det_exc, (det_num, det_num, 3) ]
|
||||
BEGIN_PROVIDER [ integer, det_exc, (det_num, det_num, 4) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Degree of excitation between two determinants. The sign is the phase.
|
||||
! Degree of excitation between two determinants. Indices are alpha, beta, alpha+beta, phase
|
||||
END_DOC
|
||||
|
||||
integer :: p
|
||||
@ -66,42 +66,57 @@ BEGIN_PROVIDER [ integer, det_exc, (det_num, det_num, 3) ]
|
||||
|
||||
enddo
|
||||
|
||||
det_exc(l,k,p) = det_exc(k,l,p)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
do l=1,det_num
|
||||
det_exc(l,l,3) = 0
|
||||
do k=l+1,det_num
|
||||
det_exc(k,l,3) = det_exc(k,l,1) + det_exc(k,l,2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Phase
|
||||
do p=1,2
|
||||
do i=mo_closed_num,mo_num
|
||||
integer :: det_pos(det_num)
|
||||
do k=1,det_num
|
||||
det_pos(k) = 0
|
||||
do j=1,elec_num_2(p)-mo_closed_num
|
||||
if (det(j,k,p) == i) then
|
||||
det_pos(k) = j
|
||||
|
||||
do l=1,det_num
|
||||
det_exc(l,l,4) = 1
|
||||
do k=l+1,det_num
|
||||
integer :: nperm
|
||||
nperm = 0
|
||||
do p=1,2
|
||||
integer :: buffer(0:mo_num-mo_closed_num)
|
||||
do i=1,elec_num_2(p)-mo_closed_num
|
||||
buffer(i) = det(i,k,p)
|
||||
enddo
|
||||
do i=1,elec_num_2(p)-mo_closed_num
|
||||
if (buffer(i) /= det(i,l,p)) then
|
||||
integer :: m
|
||||
m=elec_num_2(p)-mo_closed_num
|
||||
do j=i+1,elec_num_2(p)-mo_closed_num
|
||||
if (buffer(i) == det(j,l,p)) then ! found
|
||||
m=j
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
buffer(0) = buffer(i)
|
||||
buffer(i) = det(m,l,p)
|
||||
buffer(m) = buffer(0)
|
||||
nperm += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do k=1,det_num
|
||||
do l=k+1,det_num
|
||||
det_exc(k,l,3) *= -2*mod( (det_pos(k)+det_pos(l)), 2 )+1
|
||||
enddo
|
||||
enddo
|
||||
det_exc(k,l,4) = 1-2*mod( nperm, 2 )
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
do l=1,det_num
|
||||
do k=l+1,det_num
|
||||
det_exc(l,k,3) = det_exc(k,l,3)
|
||||
|
||||
do p=1,4
|
||||
do l=1,det_num
|
||||
do k=1,l-1
|
||||
det_exc(k,l,p) = det_exc(l,k,p)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -6,10 +6,8 @@ BEGIN_PROVIDER [ real, eplf_gamma ]
|
||||
include 'constants.F'
|
||||
real :: eps
|
||||
eps = -real(dlog(tiny(1.d0)))
|
||||
!real :: N
|
||||
!N = 0.1
|
||||
!eplf_gamma = (4./(3.*N)*pi*density_value_p)**(2./3.) * eps
|
||||
eplf_gamma = density_value_p * eps
|
||||
real :: N
|
||||
eplf_gamma = (4./3.*pi*density_value_p)**(2./3.) * eps
|
||||
!eplf_gamma = 1.e10
|
||||
!eplf_gamma = 1.e5
|
||||
END_PROVIDER
|
||||
@ -32,7 +30,7 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, mo_eplf_integral_matrix, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Array of all the <chi_i chi_j | exp(-gamma r^2)> for EPLF
|
||||
! Array of all the <phi_i phi_j | exp(-gamma r^2)> for EPLF
|
||||
END_DOC
|
||||
integer :: i, j, k, l
|
||||
double precision :: t
|
||||
@ -47,12 +45,15 @@ BEGIN_PROVIDER [ double precision, mo_eplf_integral_matrix, (mo_num,mo_num) ]
|
||||
do k=1,ao_num
|
||||
if (mo_coef(k,i) /= 0.) then
|
||||
do l=1,ao_num
|
||||
t = mo_coef(k,i)*ao_eplf_integral_matrix(l,k)
|
||||
do j=i,mo_num
|
||||
mo_eplf_integral_matrix(j,i) += t*mo_coef_transp(j,l)
|
||||
enddo
|
||||
if (abs(ao_eplf_integral_matrix(l,k))>1.d-16) then
|
||||
t = mo_coef(k,i)*ao_eplf_integral_matrix(l,k)
|
||||
do j=i,mo_num
|
||||
mo_eplf_integral_matrix(j,i) += t*mo_coef_transp(j,l)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
@ -78,20 +79,21 @@ END_PROVIDER
|
||||
|
||||
PROVIDE mo_coef_transp
|
||||
|
||||
do j=1,mo_closed_num
|
||||
do i=1,mo_closed_num
|
||||
eplf_up_up += 2.d0* mo_value_p(i)* ( &
|
||||
do i=1,mo_closed_num
|
||||
do j=1,mo_closed_num
|
||||
eplf_up_up += mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(i,j) )
|
||||
eplf_up_dn += 2.d0* mo_value_p(i)*mo_value_p(i)* &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(j,i) )
|
||||
eplf_up_dn += mo_value_p(i)*mo_value_p(i)* &
|
||||
mo_eplf_integral_matrix(j,j)
|
||||
enddo
|
||||
enddo
|
||||
eplf_up_up *= 2.d0
|
||||
eplf_up_dn *= 2.d0
|
||||
|
||||
integer :: k,l,m,n,p
|
||||
integer :: k,l,m,n,p,p2
|
||||
integer :: ik,il,jk,jl
|
||||
double precision :: ckl
|
||||
double precision :: phase
|
||||
double precision :: phase,dtemp(2)
|
||||
integer :: exc
|
||||
|
||||
PROVIDE det
|
||||
@ -100,101 +102,117 @@ END_PROVIDER
|
||||
do k=1,det_num
|
||||
do l=1,det_num
|
||||
|
||||
ckl = det_coef(k)*det_coef(l)
|
||||
|
||||
exc = det_exc(k,l,3)
|
||||
|
||||
if ( exc < 0 ) then
|
||||
phase = -1.0d0
|
||||
exc = -exc
|
||||
else
|
||||
phase = 1.0d0
|
||||
endif
|
||||
dtemp(1) = 0.d0
|
||||
dtemp(2) = 0.d0
|
||||
do p=1,2
|
||||
p2 = 1+mod(p,2)
|
||||
if ( exc == 0 ) then
|
||||
! Closed-open shell interactions
|
||||
do j=1,mo_closed_num
|
||||
do n=1,elec_num_2(p)-mo_closed_num
|
||||
ik = det(n,k,p)
|
||||
il = det(n,l,p)
|
||||
dtemp(1) += mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(j,il) )
|
||||
dtemp(2) += mo_value_p(ik)*mo_value_p(il)*mo_eplf_integral_matrix(j,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if ( exc == 0 ) then
|
||||
! Sum over all alpha-alpha and beta-beta interactions
|
||||
do p=1,2
|
||||
!- Open-closed shell interactions
|
||||
do m=1,elec_num_2(p)-mo_closed_num
|
||||
jk = det(m,k,p)
|
||||
jl = det(m,l,p)
|
||||
do i=1,mo_closed_num
|
||||
dtemp(1) += mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,i) )
|
||||
dtemp(2) += mo_value_p(i)*mo_value_p(i)*mo_eplf_integral_matrix(jk,jl)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!- Open-open shell interactions
|
||||
do m=1,elec_num_2(p)-mo_closed_num
|
||||
jk = det(m,k,p)
|
||||
jl = det(m,l,p)
|
||||
do n=1,elec_num_2(p)-mo_closed_num
|
||||
ik = det(n,k,p)
|
||||
il = det(n,l,p)
|
||||
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
|
||||
dtemp(1) += mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Sum over all alpha-beta interactions
|
||||
do m=1,elec_beta_num-mo_closed_num
|
||||
jk = det(m,k,2)
|
||||
jl = det(m,l,2)
|
||||
do n=1,elec_alpha_num-mo_closed_num
|
||||
ik = det(n,k,1)
|
||||
il = det(n,l,1)
|
||||
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
|
||||
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else if ( exc == 1 ) then
|
||||
|
||||
do p=1,2
|
||||
if ( det_exc(k,l,p) == 1 ) then
|
||||
! Sum over only the sigma-sigma interactions involving the excitation
|
||||
call get_single_excitation(k,l,ik,il,p)
|
||||
do m=1,elec_num_2(p)-mo_closed_num
|
||||
jk = det(m,k,p)
|
||||
jl = det(m,l,p)
|
||||
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
|
||||
do n=1,elec_num_2(p2)-mo_closed_num
|
||||
ik = det(n,k,p2)
|
||||
il = det(n,l,p2)
|
||||
dtemp(2) += mo_value_p(ik)*mo_value_p(il)*mo_eplf_integral_matrix(jk,jl)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Sum over only the sigma-(sigma_bar) interactions involving the excitation
|
||||
integer :: p2
|
||||
p2 = 1+mod(p,2)
|
||||
do m=1,elec_num_2(p2)-mo_closed_num
|
||||
jk = det(m,k,p2)
|
||||
jl = det(m,l,p2)
|
||||
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
|
||||
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
else if ( (exc == 1).and.(det_exc(k,l,p) == 1) ) then
|
||||
|
||||
else if (exc == 2) then
|
||||
! Sum over only the sigma-sigma interactions involving the excitation
|
||||
call get_single_excitation(k,l,ik,il,p)
|
||||
|
||||
if ( ( det_exc(k,l,1) == 2 ).or.( det_exc(k,l,2) == 2 ) ) then
|
||||
!- Open-closed shell interactions
|
||||
do j=1,mo_closed_num
|
||||
dtemp(1) += mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(j,j) - &
|
||||
mo_value_p(j)*mo_eplf_integral_matrix(j,il) )
|
||||
dtemp(2) += mo_value_p(ik)*mo_value_p(il)*mo_eplf_integral_matrix(j,j)
|
||||
enddo
|
||||
|
||||
! Consider only the double excitations of same-spin electrons
|
||||
if ( det_exc(k,l,1) == 2 ) then
|
||||
call get_double_excitation(k,l,ik,jk,il,jl,1)
|
||||
else if ( det_exc(k,l,2) == 2 ) then
|
||||
call get_double_excitation(k,l,ik,jk,il,jl,2)
|
||||
endif
|
||||
!- Closed-open shell interactions
|
||||
do i=1,mo_closed_num
|
||||
dtemp(1) += mo_value_p(i)* ( &
|
||||
mo_value_p(i)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,i) )
|
||||
dtemp(2) += mo_value_p(i)*mo_value_p(i)*mo_eplf_integral_matrix(jk,jl)
|
||||
enddo
|
||||
|
||||
eplf_up_up += phase*ckl*mo_value_p(ik)* ( &
|
||||
!- Open-open shell interactions
|
||||
do m=1,elec_num_2(p)-mo_closed_num
|
||||
jk = det(m,k,p)
|
||||
jl = det(m,l,p)
|
||||
dtemp(1) += mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
|
||||
enddo
|
||||
do m=1,elec_num_2(p2)-mo_closed_num
|
||||
jk = det(m,k,p2)
|
||||
jl = det(m,l,p2)
|
||||
dtemp(2) += mo_value_p(ik)*mo_value_p(il)*mo_eplf_integral_matrix(jk,jl)
|
||||
enddo
|
||||
|
||||
else if ( det_exc(k,l,1) == 1 ) then
|
||||
! Consider only the double excitations of opposite-spin electrons
|
||||
call get_single_excitation(k,l,ik,jk,1)
|
||||
call get_single_excitation(k,l,il,jl,2)
|
||||
else if ( (exc == 2).and.(det_exc(k,l,p) == 2) ) then
|
||||
|
||||
! Consider only the double excitations of same-spin electrons
|
||||
call get_double_excitation(k,l,ik,il,jk,jl,p)
|
||||
|
||||
dtemp(1) += mo_value_p(ik)* ( &
|
||||
mo_value_p(il)*mo_eplf_integral_matrix(jk,jl) - &
|
||||
mo_value_p(jl)*mo_eplf_integral_matrix(jk,il) )
|
||||
|
||||
else if ( (exc == 2).and.(det_exc(k,l,p) == 1) ) then
|
||||
|
||||
! Consider only the double excitations of opposite-spin electrons
|
||||
call get_single_excitation(k,l,ik,il,p)
|
||||
call get_single_excitation(k,l,jk,jl,p2)
|
||||
|
||||
dtemp(2) += mo_value_p(ik)*mo_value_p(il)*mo_eplf_integral_matrix(jk,jl)
|
||||
|
||||
eplf_up_dn += phase*ckl * ( mo_value_p(ik)*mo_value_p(il) * mo_eplf_integral_matrix(jk,jl) &
|
||||
+ mo_value_p(jk)*mo_value_p(jl) * mo_eplf_integral_matrix(ik,il) )
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
phase = dble(det_exc(k,l,4))
|
||||
eplf_up_up += phase * det_coef(k)*det_coef(l) * dtemp(1)
|
||||
eplf_up_dn += phase * det_coef(k)*det_coef(l) * dtemp(2)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
@ -304,7 +322,7 @@ double precision function ao_eplf_integral_numeric(i,j,gmma,center)
|
||||
|
||||
end function
|
||||
|
||||
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
|
||||
implicit none
|
||||
include 'constants.F'
|
||||
|
||||
@ -348,24 +366,26 @@ end function
|
||||
di(ii) = 0.5d0*inv_p(2)*dble(ii)
|
||||
enddo
|
||||
|
||||
S(1,0) = (xp-xa) * S(0,0)
|
||||
xab(1) = xp-xa
|
||||
xab(2) = xp-xb
|
||||
S(1,0) = xab(1) * S(0,0)
|
||||
if (i>1) then
|
||||
do ii=1,i-1
|
||||
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
|
||||
S(ii+1,0) = xab(1) * S(ii,0) + di(ii)*S(ii-1,0)
|
||||
enddo
|
||||
endif
|
||||
|
||||
S(0,1) = (xp-xb) * S(0,0)
|
||||
S(0,1) = xab(2) * S(0,0)
|
||||
if (j>1) then
|
||||
do jj=1,j-1
|
||||
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
|
||||
S(0,jj+1) = xab(2) * S(0,jj) + di(jj)*S(0,jj-1)
|
||||
enddo
|
||||
endif
|
||||
|
||||
do jj=1,j
|
||||
S(1,jj) = (xp-xa) * S(0,jj) + di(jj) * S(0,jj-1)
|
||||
S(1,jj) = xab(1) * S(0,jj) + di(jj) * S(0,jj-1)
|
||||
do ii=2,i
|
||||
S(ii,jj) = (xp-xa) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
|
||||
S(ii,jj) = xab(1) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -8,13 +8,9 @@ BEGIN_PROVIDER [ double precision, ao_overlap_matrix, (ao_num,ao_num) ]
|
||||
integer :: i, j
|
||||
double precision :: ao_overlap
|
||||
do j=1,ao_num
|
||||
do i=j,ao_num
|
||||
do i=1,j
|
||||
ao_overlap_matrix(i,j) = ao_overlap(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do j=1,ao_num
|
||||
do i=1,j-1
|
||||
ao_overlap_matrix(i,j) = ao_overlap(j,i)
|
||||
ao_overlap_matrix(j,i) = ao_overlap_matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
@ -237,14 +233,14 @@ double precision function ao_overlap(i,j)
|
||||
|
||||
do q=1,ao_prim_num(j)
|
||||
do p=1,ao_prim_num(i)
|
||||
integral(p,q) = integral(p,q)*ao_coef(p,i)*ao_coef(q,j)
|
||||
integral(p,q) *= ao_coef(p,i)*ao_coef(q,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
ao_overlap = 0.
|
||||
ao_overlap = 0.d0
|
||||
do q=1,ao_prim_num(j)
|
||||
do p=1,ao_prim_num(i)
|
||||
ao_overlap = ao_overlap + integral(p,q)
|
||||
ao_overlap += integral(p,q)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -10,8 +10,8 @@ subroutine run
|
||||
point(1) = 0.
|
||||
point(2) = 0.
|
||||
integer :: i
|
||||
do i=0,40
|
||||
point(3) = real(i)/10.
|
||||
do i=-40,40
|
||||
point(3) = real(i)/20.
|
||||
TOUCH point
|
||||
print *, point(3), eplf_value_p, eplf_up_up, eplf_up_dn
|
||||
enddo
|
||||
|
Loading…
Reference in New Issue
Block a user