10
0
mirror of https://gitlab.com/scemama/eplf synced 2025-01-03 10:05:58 +01:00

Added recursive fortran func

This commit is contained in:
Anthony Scemama 2009-05-20 17:57:35 +02:00
parent 5069a720a0
commit 5de7b72028
2 changed files with 92 additions and 14 deletions

View File

@ -1,6 +1,7 @@
IRPF90 = irpf90 -DMPI#-a -d
FC = mpif90
FCFLAGS= -O3 -xT
IRPF90 = irpf90 -DMPI#-a -d
FC = mpif90 -xT
FCFLAGS= -O3 -g
#FC = gfortran -g -ffree-line-length-none
#FCFLAGS=

View File

@ -33,13 +33,15 @@ BEGIN_PROVIDER [ double precision, mo_eplf_integral_matrix, (mo_num,mo_num) ]
do j=i,mo_num
mo_eplf_integral_matrix(j,i) = 0.
enddo
enddo
do k=1,ao_num
do i=1,mo_num
do k=1,ao_num
if (mo_coef(k,i) /= 0.) then
do j=i,mo_num
do l=1,ao_num
mo_eplf_integral_matrix(j,i) = mo_eplf_integral_matrix(j,i) + &
mo_coef(k,i)*mo_coef(l,j)*ao_eplf_integral_matrix(k,l)
mo_coef(k,i)*mo_coef(l,j)*ao_eplf_integral_matrix(l,k)
enddo
enddo
endif
@ -203,7 +205,7 @@ double precision function ao_eplf_integral_numeric(i,j,gmma,center)
end function
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
double precision function ao_eplf_integral_primitive_oneD2(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
@ -213,7 +215,7 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
integer :: ii, jj, kk, ll
real :: xp1,xp
real :: p1,p
double precision :: S(0:i+1,0:j)
double precision :: S(0:i+1,0:j+1)
double precision :: inv_p, di(max(i,j)), dj(j), c, c1
ASSERT (a>0.)
@ -229,23 +231,18 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
! Obara-Saika recursion
if (i>0) then
S(1,0) = (xp-xa) * S(0,0)
endif
if (j>0) then
S(0,1) = (xp-xb) * S(0,0)
endif
do ii=1,max(i,j)
di(ii) = 0.5d0*inv_p*dble(ii)
enddo
S(1,0) = (xp-xa) * S(0,0)
if (i>1) then
do ii=1,i-1
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
S(0,1) = (xp-xb) * S(0,0)
if (j>1) then
do jj=1,j-1
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
@ -259,7 +256,69 @@ double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
enddo
enddo
ao_eplf_integral_primitive_oneD = S(i,j)
ao_eplf_integral_primitive_oneD2 = S(i,j)
end function
double precision function ao_eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
real :: xp1,xp
real :: p1,p
double precision :: S00, xpa, xpb
double precision :: inv_p,c,c1
double precision :: ObaraS
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
! Gaussian product
call gaussian_product(a,xa,b,xb,c1,p1,xp1)
call gaussian_product(p1,xp1,gmma,xr,c,p,xp)
inv_p = 1.d0/p
S00 = dsqrt(pi*inv_p)*c*c1
xpa = xp-xa
xpb = xp-xb
ao_eplf_integral_primitive_oneD = ObaraS(i,j,xpa,xpb,inv_p,S00)
end function
recursive double precision function ObaraS(i,j,xpa,xpb,inv_p,S00) result(res)
implicit none
integer, intent(in) :: i, j
double precision, intent(in) :: xpa, xpb, inv_p
double precision,intent(in) :: S00
if (i == 0) then
if (j == 0) then
res = S00
else ! (j>0)
res = xpb*ObaraS(0,j-1,xpa,xpb,inv_p,S00)
if (j>1) then
res = res + 0.5d0*dble(j-1)*inv_p*ObaraS(0,j-2,xpa,xpb,inv_p,S00)
endif
endif ! (i==0).and.(j>0)
else ! (i>0)
if (j==0) then
res = xpa*ObaraS(i-1,0,xpa,xpb,inv_p,S00)
if (i>1) then
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,0,xpa,xpb,inv_p,S00)
endif
else ! (i>0).and.(j>0)
res = xpa * ObaraS(i-1,j,xpa,xpb,inv_p,S00)
if (i>1) then
res = res + 0.5d0*dble(i-1)*inv_p*ObaraS(i-2,j,xpa,xpb,inv_p,S00)
endif
res = res + 0.5d0*dble(j)*inv_p*ObaraS(i-1,j-1,xpa,xpb,inv_p,S00)
endif ! (i>0).and.(j>0)
endif ! (i>0)
end function
@ -313,3 +372,21 @@ double precision function ao_eplf_integral(i,j,gmma,center)
end function
double precision function mo_eplf_integral(i,j)
implicit none
integer :: i, j, k, l
PROVIDE ao_eplf_integral_matrix
PROVIDE mo_coef
mo_eplf_integral = 0.d0
do k=1,ao_num
if (mo_coef(k,i) /= 0.) then
do l=1,ao_num
mo_eplf_integral = mo_eplf_integral + &
mo_coef(k,i)*mo_coef(l,j)*ao_eplf_integral_matrix(k,l)
enddo
endif
enddo
end function