10
0
mirror of https://gitlab.com/scemama/eplf synced 2025-01-05 02:48:55 +01:00

Improved documentation

This commit is contained in:
Anthony Scemama 2010-07-16 17:50:42 +02:00
parent 4dc0e83a94
commit 445316803d
4 changed files with 105 additions and 179 deletions

Binary file not shown.

Binary file not shown.

View File

@ -1,221 +1,149 @@
@section QMC Formulation @section QMC Formulation
The EPLF@footnote{``Electron pair localization function, a practical tool to visualize electron
localization in molecules from quantum Monte Carlo data'', A. Scemama, P. Chaquin and M. Caffarel,
@i{J. Chem. Phys.} @b{121}, 1725-1735 (2004).
}
has been designed to describe local electron pairing in molecular
systems. It is defined as a scalar function defined in the three-dimensional
space and taking its values in the [-1,1] range. It is defined as follows:
The Electron Pair Localization Function (EPLF) is a three-dimensional function
measuring locally the electron pairing in a molecular
system.@footnote{A. Scemama, P. Chaquin and M. Caffarel, @i{J. Chem. Phys.}
@b{121}, 1725-1735 (2004).}
An electron @math{i} located at @math{\vec{r}_i} is said to be paired to an electron @math{j}
located at @math{\vec{r}_j} if electron @math{j} is the closest electron to @math{i}. The
amount of electron pairing at point @math{{\vec r}} is therefore proportional to the
inverse of
@tex @tex
$$ $$
{\rm EPLF}(\vec{r}) = { d_{\sigma \sigma} (\vec{r}) - d_{\sigma {\bar \sigma}} (\vec{r}) \over d_{\sigma \sigma} (\vec{r}) + d_{\sigma {\bar \sigma}} d({\vec r}) = \sum_{i=1,N} \langle \Psi | \delta(\vec{r}-\vec{r}_i) \min_{j\ne i} r_{ij} | \Psi \rangle
(\vec{r})}
$$ $$
@end tex @end tex
where the quantity @math{ d_{\sigma \sigma} (\vec{r}) } [@math{resp. d_{\sigma
\bar \sigma} (\vec{r})} ] denotes the quantum-mechanical average of the
distance between an electron of spin @math{\sigma} located at @math{\vec r} and the closest
electron of same spin (resp., of opposite spin @math{\bar\sigma}).
The mathematical definition of these quantities can be written as where
@math{d({\vec r})} is the shortest electron-electron distance at @math{{\vec r}},
@math{\Psi({\vec r}_1,\dots,{\vec r}_N)} is the @math{N}-electron wave function
and
@math{r_{ij} = |{\vec r}_j - {\vec r}_i|}.
There are two different types of electron pairs: pairs of electrons with
the same spin @math{\sigma}, and pairs of electrons with opposite spins @math{\sigma}
and @math{\bar \sigma}.
Hence, two quantities are introduced:
@tex @tex
$$ $$
d_{\sigma \sigma}(\vec{r}) = \int \Psi^2(\vec{r}_1,\dots,\vec{r_N}) \left[ d_{\sigma \sigma}({\vec r}) = \sum_{i=1,N} \langle \Psi | \delta(\vec{r}-\vec{r}_i) \min_{j\ne i ; \sigma_i = \sigma_j} r_{ij} | \Psi \rangle
\sum_{i=1}^N \delta(\vec{r}-\vec{r}_i) \min_{j\neq
i;\sigma_j=\sigma_i}|\vec{r}_i - \vec{r}_j| \right] d\vec{r}_1 \dots d\vec{r}_N
$$ $$
$$ $$
d_{\sigma {\bar \sigma}}(\vec{r}) = \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N) d_{\sigma {\bar \sigma}}({\vec r}) = \sum_{i=1,N} \langle \Psi | \delta(\vec{r}-\vec{r}_i) \min_{j ; \sigma_i \ne \sigma_j} r_{ij} | \Psi \rangle
\left[ \sum_{i=1}^N \delta(\vec{r}-\vec{r}_i) \min_{j\ne
i;\sigma_j\neq\sigma_i}|\vec{r}_i - \vec{r}_j| \right] d\vec{r}_1 \dots
d\vec{r}_N
$$ $$
@end tex @end tex
where @math{\sigma} is the spin (\alpha or \beta), @math{\bar \sigma} is the
spin opposite to @math{\sigma} @math{\Psi(\vec{r}_1,\dots,\vec{r}_N)} is the
wave function, and @math{N} is the number of electrons.
In a region of space, if the shortest distance separating anti-parallel The electron pair localization function is bounded in the @math{[-1,1]} interval,
electrons is smaller than the shortest distance separating electrons of same and is defined as
spin, the EPLF takes positive values and indicates pairing of anti-parallel @tex
electrons. In contrast, if the shortest distance separating anti-parallel $$
electrons is larger than the shortest distance separating electrons of same {\rm EPLF}(\vec{r}) =
spin, the EPLF takes negative values and indicates pairing of parallel { d_{\sigma \sigma} (\vec{r})
electrons (which in practice never happens). If the shortest distance - d_{\sigma {\bar \sigma}} (\vec{r}) \over
separating anti-parallel electrons is equivalent to the shortest distance d_{\sigma \sigma} (\vec{r})
separating electrons of same spin, the EPLF takes values close to zero and + d_{\sigma {\bar \sigma}} (\vec{r}) }
indicates no electron pairing. $$
@end tex
When the pairing of spin-unlike electrons is predominant, @math{d_{\sigma \sigma}
> d_{\sigma {\bar \sigma}}} and @math{{\rm EPLF}({\vec r}) > 0}.
When the pairing of spin-like electrons is predominant, @math{d_{\sigma \sigma}
< d_{\sigma {\bar \sigma}}} and @math{{\rm EPLF}({\vec r}) < 0}.
When the electron pairing of spin-like and spin-unlike electrons is equivalent,
@math{{\rm EPLF}({\vec r}) \sim 0}.
The original formulation of EPLF is extremely easy to compute in the quantum This localization function does not depend on the type of wave function, as
Monte Carlo framework. However, it is not possible to compute it analytically opposed to the Electron Localization Function@footnote{A. D. Becke and K. E. Edgecombe
due to the presence of the min function in the definitions of @math{d_{\sigma @i{J. Chem. Phys.} @b{92}, 5397 (1990).} (ELF) where the
\sigma}} and @math{d_{\sigma \bar \sigma}} . wave function has to be expressed on a single-electron basis set.
The EPLF can therefore measure electron pairing using any kind of wave
function: Hartree-Fock (HF), configuration interaction (CI),
multi-configurational self consistent field (MCSCF) as well as Slater-Jastrow,
Diffusion Monte Carlo (DMC), Hylleraas wave functions, @i{etc}.
Due to the presence of the @math{\min} function in the definition of @math{d_{\sigma
\sigma}} and @math{d_{\sigma {\bar \sigma}}} these quantities cannot be evaluated
analytically, so quantum Monte Carlo (QMC) methods have been
used to compute three-dimensional EPLF grids via a statistical sampling of
@math{|\Psi({\vec r}_1,\dots,{\vec r}_N)|^2}.
@section Analytical Formulation @section Analytical Formulation
@subsection The EPLF operator Recently, we proposed an alternative definition of the EPLF which is
analytically computable.@footnote{F. Alary, J.-L. Heully, A. Scemama, B. Garreau-de-Bonneval, K. I. Chane-Ching and M. Caffarel
To evaluate exactly the average of the min function is not possible. We @i{Theor. Chem. Acc.} @b{126}, 243 (2010).}
proposed@footnote{``Structural and optical properties of a neutral Nickel bisdithiolene The @math{\min} function is approximated
complex. Density Functional versus ab-initio methods.'', F. Alary, J.-L. using:
Heully, A. Scemama, B. Garreau-de-Bonneval, K. I. Chane-Ching and M. Caffarel,
@i{Theoretical Chemistry Accounts}, DOI: 10.1007/s00214-009-0679-9}
to introduce a representation of this function in terms of gaussians
and to construct our @math{d}-functions in a slightly different way so that the
gaussian contributions can be exactly integrated out. The representation of the
min function we are considering here is written as
@tex @tex
$$ $$
\min_{j\neq i} |\vec{r}_i - \vec{r}_j| = \lim_{\gamma \rightarrow \infty} \min_{j\neq i} r_{ij} = \lim_{\gamma \rightarrow \infty}
\sqrt{ -{1 \over \gamma} \ln ( \sum_{j \neq i} e^{ -\gamma |\vec{r}_i - \sqrt{ -{1\over\gamma} \ln f(\gamma;r_{ij})}
\vec{r}_j|^2 } ) }
$$ $$
@end tex
and we propose to define the new modified average-distances as
@tex
$$ $$
d_{\sigma \sigma}(\vec{r}) \sim \lim_{\gamma \rightarrow \infty} f(\gamma;r_{ij}) =
\sqrt{-{1 \over \gamma} \ln \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N) \sum_{j \neq i} e^{ -\gamma r_{ij}^2 }
\sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i) \sum_{j \neq i ; \sigma_i =
\sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } d\vec{r}_1 \dots
d\vec{r}_N}
$$
$$
d_{\sigma \bar{\sigma}} (\vec{r}) \sim \lim_{\gamma \rightarrow \infty}
\sqrt{-{1\over \gamma} \ln \int \Psi^2(\vec{r}_1,\dots,\vec{r}_N)
\sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i) \sum_{j\neq i ; \sigma_i \neq
\sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } d\vec{r}_1 \dots
d\vec{r}_N} $$
@end tex
Note that these new definitions of the average-distances are different from the
previous ones essentially because @math{\ln \langle X \rangle \neq \langle \ln
X\rangle} where @math{X} denotes the sum @math{\sum_{j} e^{ -\gamma |\vec{r} -
\vec{r}_j|^2 }} and the symbol @math{\langle\dots\rangle} denotes the quantum
average. Remark that the equality is almost reached when the
fluctuations of @math{X} are small. In our applications it seems that we are
not too far from this regime and we have thus systematically observed that both
definitions of the @math{d}-functions lead to similar EPLF landscapes.
Now, introducing
@tex
$$
f_{\sigma\sigma}^\gamma(\vec{r}) = \sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i)
\sum_{j\ne i ; \sigma_i = \sigma_j}^{N} e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 }
$$
$$
f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) = \sum_{i=1}^{N}
\delta(\vec{r}-\vec{r}_i) \sum_{j ; \sigma_i \neq \sigma_j}^{N} e^{ -\gamma
|\vec{r}_i - \vec{r}_j|^2 } $$
@end tex
we obtain
@tex
$$
{\rm EPLF}(\vec{r}) = {\sqrt{-{1\over \gamma} \ln \langle \Psi |
f_{\sigma\sigma}^\gamma(\vec{r}) | \Psi \rangle} - \sqrt{-{1\over \gamma} \ln
\langle \Psi | f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle} \over
\sqrt{-{1\over \gamma} \ln \langle \Psi | f_{\sigma\sigma}^\gamma(\vec{r}) |
\Psi \rangle} + \sqrt{-{1\over \gamma} \ln \langle \Psi |
f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle}}
$$ $$
@end tex @end tex
@subsection Single determinant wave functions As @math{f(\gamma ; r_{ij})} has small
fluctuations in the regions of interest (bonding regions, lone pairs,@dots),
the integrals
@tex @tex
$$ $$
\Psi(r_1,\dots,r_N) = D_0 = |\phi_1,\dots,\phi_N| \left\langle \Psi \left| \delta({\vec r}-{\vec r}_i) \left( \lim_{\gamma \rightarrow \infty} \sqrt{ -{1 \over \gamma} \ln f(\gamma;r_{ij})} \right) \right| \Psi \right\rangle
$$
$$
\langle \Psi | f_{\sigma\sigma}^\gamma(\vec{r}) | \Psi \rangle = \sum_{\sigma =
\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j\ne i}^{N_\sigma} \int
\phi_i(\vec{r}) \phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
\phi_i(\vec{r}) \phi_j(\vec{r'}) d\vec{r'}
$$
$$
- \int \phi_i(\vec{r})
\phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2} \phi_j(\vec{r})
\phi_i(\vec{r'}) d\vec{r'}
$$
$$
\langle \Psi | f_{\sigma\bar{\sigma}}^\gamma(\vec{r}) | \Psi \rangle =
\sum_{\sigma=\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j=1}^{N_{\bar \sigma}}
\int \phi_i(\vec{r}) \phi_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
\phi_i(\vec{r}) \phi_j(\vec{r'}) d\vec{r'}
$$ $$
@end tex @end tex
can be approximated as
@section Multi-determinant wave functions
@tex @tex
$$ $$
\Psi = \sum_k c_k D_k \lim_{\gamma \rightarrow \infty} \sqrt{ -{1 \over \gamma} \ln
\langle \Psi | \delta({\vec r}-{\vec r}_i) f(\gamma;r_{ij}) | \Psi \rangle }
$$ $$
$$
\langle \Psi | f(\vec{r}) | \Psi \rangle = \sum_k \sum_l c_k c_l \langle D_k |
f(\vec{r}) | D_l \rangle $$
$$
\langle D_k | f_{\sigma\sigma}^\gamma(\vec{r}) | D_l \rangle = \sum_{\sigma =
\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j\ne i}^{N_\sigma} \int
\phi^k_i(\vec{r}) \phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
\phi^l_i(\vec{r}) \phi^l_j(\vec{r'}) d\vec{r'}
$$
$$
- \int \phi^k_i(\vec{r})
\phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2} \phi^l_j(\vec{r})
\phi^l_i(\vec{r'}) d\vec{r'} $$
$$
\langle D_k | f_{\sigma\bar \sigma}^\gamma(\vec{r}) | D_l \rangle =
\sum_{\sigma=\alpha,\beta} \sum_{i=1}^{N_\sigma} \sum_{j=1}^{N_{\bar \sigma}}
\int \phi^k_i(\vec{r}) \phi^k_j(\vec{r'}) e^{-\gamma |\vec{r'}-\vec{r}|^2}
\phi^l_i(\vec{r}) \phi^l_j(\vec{r'}) d\vec{r'} $$
@end tex @end tex
The expectation values of the minimum distances are now given by:
@subsection Expression of the gamma parameter
In our definition of the modified EPLF the parameter @math{\gamma} is supposed to be (very)
large. In practice, if it is chosen too small, the integrals @math{\langle \Psi |
f_{\sigma{\bar \sigma}}^\gamma(\vec{r}) | \Psi \rangle} can take values larger
than 1 in regions of high density, giving a negative value for the shortest
average distance. If it is chosen too large numerical instabilities appear
since the values of the integrals become extremely small. We propose to use a
value of @math{\gamma} which depends on the electron density @math{\rho(\vec{r})} as:
@tex @tex
$$ $$
\gamma(\vec{r}) = (-\ln \epsilon) \left( {1\over N}{4\over 3}\pi \rho(\vec{r}) \right)^{2/3} d_{\sigma \sigma}(\vec{r}) \sim
\lim_{\gamma \rightarrow \infty} \sqrt{-{1 \over \gamma} \ln
f_{\sigma \sigma}(\gamma;\vec{r})}
$$
$$
d_{\sigma \bar{\sigma}} (\vec{r}) \sim
\lim_{\gamma \rightarrow \infty} \sqrt{-{1 \over \gamma} \ln
f_{\sigma \bar{\sigma}} (\gamma;\vec{r})}
$$ $$
@end tex @end tex
where @math{\epsilon} is the smallest possible floating point number that can with the two-electron integrals:
be represented with 64 bits (@math{\sim 2.10^{-308}}). The reason for this
choice is the following.
The largest possible value of the approximate shortest distance can be computed as
@tex @tex
$$ $$
d_{\rm max} = \sqrt{-{1 \over \gamma} \ln \epsilon} f_{\sigma \sigma}(\gamma;\vec{r}) =
\left \langle \Psi \left| \sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i)
\sum_{j \neq i ; \sigma_i = \sigma_j}^{N}
e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } \right| \Psi \right\rangle
$$
$$
f_{\sigma \bar{\sigma}} (\gamma;\vec{r}) =
\left \langle \Psi \left| \sum_{i=1}^{N} \delta(\vec{r}-\vec{r}_i)
\sum_{j ; \sigma_i \neq \sigma_j}^{N}
e^{ -\gamma |\vec{r}_i - \vec{r}_j|^2 } \right| \Psi \right \rangle
$$ $$
@end tex @end tex
If the density is conidered constant in a sphere of radius @math{d_{\rm max}}, the number If @math{\gamma} is not large enough in regions where
@math{N} of electrons contained in the sphere is electrons are close to each other, the value of @math{f_{\sigma \sigma}} or
@math{f_{\sigma \bar{\sigma}}} can be greater than 1. In that case, the
approximation of the min function is irrelevant since its value becomes negative.
On the other hand, if @math{\gamma} is too large @math{f_{\sigma \sigma}} and
@math{f_{\sigma \bar{\sigma}}} have almost always extremely small values. In this
case, the values of @math{f_{\sigma \sigma}} and @math{f_{\sigma \bar{\sigma}}} are in practice not
accurately representable with 64 bit floating point numbers, as they may be
rounded to zero. We propose @math{\gamma} to depend on the density, such that the
largest representable value of @math{d_{\sigma \sigma}} is equal to the radius of a
sphere that contains almost 0.1 electron:
@tex @tex
$$ $$
N = {4\over 3} \pi d_{\rm max}^3 \rho(r) \gamma(\vec{r}) = \left({4\pi \over 3 n} \rho(\vec{r}) \right)^{2/3} (-\ln (\epsilon))
$$
@end tex
The maximum possible distance can be parametrized by a target constant number @math{N}
of electrons in the sphere
@tex
$$
d_{\rm max}(r) = \left( {1\over N} {4\over 3} \pi \rho(r) \right)^{-1/3}
$$ $$
@end tex @end tex
where @math{n=0.1} and @math{\epsilon} is the smallest floating point number representable with
64 bits (@math{\sim 2.10^{-308}}).
If @math{N} is chosen small enough (0.01 electron), the value of
@math{\langle \Psi | f(r) | \Psi \rangle} is very unlikely to exceed 1, and the
value of @math{\gamma} will also be sufficiently large in the valence regions.

View File

@ -95,15 +95,13 @@ def write_ezfioFile(res,filename):
ezfio.ao_basis_ao_expo = expo ezfio.ao_basis_ao_expo = expo
# MOs # MOs
NumOrbSym = [ s[1] for s in res.symmetries ]
mo_tot_num = sum(NumOrbSym)
ezfio.mo_basis_mo_tot_num = mo_tot_num
MoTag = res.mo_types[-1] MoTag = res.mo_types[-1]
if MoTag == 'Natural': if MoTag == 'Natural':
res.mo_types.pop() res.mo_types.pop()
MoTag = res.mo_types[-1] MoTag = res.mo_types[-1]
print MoTag mo_tot_num = len(res.mo_sets[MoTag])
ezfio.mo_basis_mo_tot_num = mo_tot_num
try: try:
newocc = [0. for i in range(mo_tot_num)] newocc = [0. for i in range(mo_tot_num)]
while len(res.occ_num[MoTag]) < mo_tot_num: while len(res.occ_num[MoTag]) < mo_tot_num: