10
0
mirror of https://gitlab.com/scemama/eplf synced 2024-12-31 16:45:56 +01:00

Obara Saika for primitive overlap integral

This commit is contained in:
Anthony Scemama 2009-05-11 22:17:21 +02:00
commit 432cbe0736
4 changed files with 92 additions and 0 deletions

12
Makefile Normal file
View File

@ -0,0 +1,12 @@
IRPF90 = irpf90 #-a -d
FC = ifort
FCFLAGS= -O3 -xP
SRC=
OBJ=
LIB=
include irpf90.make
irpf90.make: $(wildcard *.irp.f)
$(IRPF90)

1
constants.F Normal file
View File

@ -0,0 +1 @@
double precision, parameter :: pi=3.14159265359d0

6
debug.irp.f Normal file
View File

@ -0,0 +1,6 @@
program debug
double precision a
double precision primitive_overlap
a = primitive_overlap(3.d0,-1.d0,3,2.d0,1.d0,4)
print *, a
end

73
integral.irp.f Normal file
View File

@ -0,0 +1,73 @@
subroutine gaussian_product(a,xa,b,xb,k,p,xp)
implicit none
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
double precision, intent(in) :: a,b ! Exponents
double precision, intent(in) :: xa,xb ! Centers
double precision, intent(out) :: p ! New exponent
double precision, intent(out) :: xp ! New center
double precision, intent(out) :: k ! Constant
double precision:: p_inv
p = a+b
xp = (a*xa+b*xb)
p_inv = 1./p
xp = xp*p_inv
k = dexp(-a*b*p_inv*(xa-xb)**2)
end subroutine
double precision function primitive_overlap(a,xa,i,b,xb,j)
implicit none
include 'constants.F'
double precision, intent(in) :: a,b ! Exponents
double precision, intent(in) :: xa,xb ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
double precision:: xp
double precision:: p
double precision :: S(0:i,0:j)
double precision :: inv_2p, di(i), dj(j)
call gaussian_product(a,xa,b,xb,S(0,0),p,xp)
S(0,0) = S(0,0) * dsqrt(pi/p)
if (i>0) then
S(1,0) = (xp-xa) * S(0,0) ! TODO verifier signe
endif
if (j>0) then
S(0,1) = (xp-xb) * S(0,0) ! TODO verifier signe
endif
inv_2p = 1./(2.*p)
do ii=1,max(i,j)
di(ii) = inv_2p * dble(ii)
enddo
if (i>1) then
do ii=1,i-1
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
if (j>1) then
do jj=1,j-1
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
enddo
endif
do jj=1,j
do ii=1,i
S(ii,jj) = (xp-xa) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
enddo
enddo
primitive_overlap = S(i,j)
end function