10
0
mirror of https://gitlab.com/scemama/eplf synced 2024-12-31 16:45:56 +01:00

d_up_up is negative for open shell => bug

This commit is contained in:
Anthony Scemama 2009-05-14 17:48:27 +02:00
parent 1284eab958
commit 2a64971195
8 changed files with 879 additions and 0 deletions

107
ao_axis_point.irp.f Normal file
View File

@ -0,0 +1,107 @@
BEGIN_PROVIDER [ real, ao_axis_power_p, (-2:ao_power_max,3,nucl_num) ]
implicit none
BEGIN_DOC
! Evaluation of power of x, y, z at the current point for each
! nucleus. Negative power -> 0.
END_DOC
integer :: i,k,l
do i=1,nucl_num
do l=1,3
ao_axis_power_p(-2,l,i) = 0.
ao_axis_power_p(-1,l,i) = 0.
ao_axis_power_p(0,l,i) = 0.
ao_axis_power_p(0,l,i) = 1.
do k=1,ao_power_max_nucl(i,l)
ao_axis_power_p(k,l,i) = point_nucl_dist_vec(i,l)*ao_axis_power_p(k-1,l,i)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_axis_p, (ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Cartesian polynomial part of the atomic orbitals.
END_DOC
integer :: i
do i=1,ao_num
ao_axis_p(i) &
= ao_axis_power_p( ao_power(i,1) , 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2) , 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3) , 3 , ao_nucl(i) )
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_axis_grad_p, (ao_num,3) ]
implicit none
include 'types.F'
BEGIN_DOC
! Gradients of the cartesian polynomial part of the atomic orbitals.
END_DOC
integer :: i, l
real:: real_of_int(-1:10)
data real_of_int /0.,0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
do i=1,ao_num
ao_axis_grad_p(i,1) = real_of_int(ao_power(i,1)) &
* ao_axis_power_p( ao_power(i,1)-1, 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2) , 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3) , 3 , ao_nucl(i) )
enddo
do i=1,ao_num
ao_axis_grad_p(i,2) = real_of_int(ao_power(i,2)) &
* ao_axis_power_p( ao_power(i,1) , 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2)-1, 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3) , 3 , ao_nucl(i) )
enddo
do i=1,ao_num
ao_axis_grad_p(i,3) = real_of_int(ao_power(i,3)) &
* ao_axis_power_p( ao_power(i,1) , 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2) , 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3)-1, 3 , ao_nucl(i) )
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_axis_lapl_p, (ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Laplacian of the cartesian atomic orbitals
END_DOC
integer :: i, j, l
do i=1,ao_num
real:: real_of_int(-2:10)
data real_of_int /0.,0.,0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
ao_axis_lapl_p(i) &
= real_of_int(ao_power(i,1)) &
* real_of_int(ao_power(i,1)-1) &
* ao_axis_power_p( ao_power(i,1)-2, 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2) , 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3) , 3 , ao_nucl(i) ) &
+ real_of_int(ao_power(i,2)) &
* real_of_int(ao_power(i,2)-1) &
* ao_axis_power_p( ao_power(i,1) , 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2)-2, 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3) , 3 , ao_nucl(i) ) &
+ real_of_int(ao_power(i,3)) &
* real_of_int(ao_power(i,3)-1) &
* ao_axis_power_p( ao_power(i,1) , 1 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,2) , 2 , ao_nucl(i) ) &
* ao_axis_power_p( ao_power(i,3)-2, 3 , ao_nucl(i) )
enddo
END_PROVIDER

51
ao_full_point.irp.f Normal file
View File

@ -0,0 +1,51 @@
BEGIN_PROVIDER [ real, ao_value_p, (ao_num) ]
implicit none
BEGIN_DOC
! Values of the atomic orbitals
END_DOC
integer :: i
do i=1,ao_num
ao_value_p(i) = ao_oneD_p(i) * ao_axis_p(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_grad_p, (ao_num,3) ]
implicit none
include 'types.F'
BEGIN_DOC
! Gradients of the atomic orbitals
END_DOC
integer :: i,l
do l=1,3
do i=1,ao_num
ao_grad_p(i,l) = ao_oneD_p(i) * ao_axis_grad_p(i,l)
enddo
do i=1,ao_num
ao_grad_p(i,l) = ao_grad_p(i,l) + ao_oneD_grad_p(i,l) * ao_axis_p(i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_lapl_p, (ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Laplacian of the atomic orbitals
END_DOC
integer :: i,l
do i=1,ao_num
ao_lapl_p(i) = ao_oneD_p(i) * ao_axis_lapl_p(i)
enddo
do i=1,ao_num
ao_lapl_p(i) = ao_lapl_p(i) + ao_oneD_lapl_p(i) * ao_axis_p(i)
enddo
do l=1,3
do i=1,ao_num
ao_lapl_p(i) = ao_lapl_p(i) + 2.*ao_oneD_grad_p(i,l) * ao_axis_grad_p(i,l)
enddo
enddo
END_PROVIDER

128
ao_oneD_point.irp.f Normal file
View File

@ -0,0 +1,128 @@
BEGIN_PROVIDER [ real, ao_oneD_prim_p, (ao_prim_num_max,ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Exponentials of the primitive AOs
END_DOC
integer :: i, k
real:: r2, rtemp
! Compute alpha*r or alpha*r^2
do i=1,ao_num
r2 = point_nucl_dist_2(ao_nucl(i))
do k=1,ao_prim_num(i)
ao_oneD_prim_p(k,i) = r2
enddo
enddo
! Compute exp(-alpha*r) or exp(-alpha*r^2)
do i=1,ao_num
do k=1,ao_prim_num(i)
ao_oneD_prim_p(k,i) = exp(-ao_oneD_prim_p(k,i)*ao_expo(k,i))
enddo
! Cut below 1.d-12
do k=1,ao_prim_num(i)
if ( abs(ao_oneD_prim_p(k,i)) < 1.e-12 ) then
ao_oneD_prim_p(k,i) = 0.
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_oneD_p, (ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! One-dimensional component of the AOs
END_DOC
integer :: i, k
do i=1,ao_num
ao_oneD_p(i) = 0.
do k=1,ao_prim_num(i)
ao_oneD_p(i) = ao_oneD_p(i) + ao_coef(k,i)*ao_oneD_prim_p(k,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_oneD_prim_grad_p, (ao_prim_num_max,ao_num,3) ]
implicit none
include 'types.F'
BEGIN_DOC
! Gradients of the one-dimensional component of the primitive AOs
END_DOC
integer :: i, k, l
real:: factor
do l=1,3
do i=1,ao_num
factor = -2.*point_nucl_dist_vec(ao_nucl(i),l)
do k=1,ao_prim_num(i)
ao_oneD_prim_grad_p(k,i,l) = factor*ao_expo(k,i)*ao_oneD_prim_p(k,i)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_oneD_grad_p, (ao_num,3) ]
implicit none
include 'types.F'
BEGIN_DOC
! Gradients of the one-dimensional component of the AOs
END_DOC
integer :: i, k, l
do l=1,3
do i=1,ao_num
ao_oneD_grad_p(i,l) = 0.
do k=1,ao_prim_num(i)
ao_oneD_grad_p(i,l) = ao_oneD_grad_p(i,l) + ao_coef(k,i)*ao_oneD_prim_grad_p(k,i,l)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_oneD_prim_lapl_p, (ao_prim_num_max,ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Laplacian of the one-dimensional component of the primitive AOs
END_DOC
integer :: i, k, l
do i=1,ao_num
do k=1,ao_prim_num(i)
ao_oneD_prim_lapl_p(k,i) = ao_oneD_prim_p(k,i) * ao_expo(k,i) * &
( 4.*ao_expo(k,i)*point_nucl_dist_2(ao_nucl(i)) - 6. )
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, ao_oneD_lapl_p, (ao_num) ]
implicit none
include 'types.F'
BEGIN_DOC
! Laplacian of the one-dimensional component of the AOs
END_DOC
integer :: i, k
do i=1,ao_num
ao_oneD_lapl_p(i) = 0.
do k=1,ao_prim_num(i)
ao_oneD_lapl_p(i) = ao_oneD_lapl_p(i) + ao_coef(k,i)*ao_oneD_prim_lapl_p(k,i)
enddo
enddo
END_PROVIDER

54
electrons.irp.f Normal file
View File

@ -0,0 +1,54 @@
BEGIN_PROVIDER [ integer, elec_alpha_num ]
BEGIN_DOC
! Number of alpha electrons
END_DOC
implicit none
elec_alpha_num = -1
!$OMP CRITICAL (qcio_critical)
call qcio_get_system_num_alpha(elec_alpha_num)
!$OMP END CRITICAL (qcio_critical)
ASSERT (elec_alpha_num > 0)
END_PROVIDER
BEGIN_PROVIDER [ integer, elec_beta_num ]
BEGIN_DOC
! Number of beta electrons
END_DOC
implicit none
elec_beta_num = -1
!$OMP CRITICAL (qcio_critical)
call qcio_get_system_num_beta(elec_beta_num)
!$OMP END CRITICAL (qcio_critical)
ASSERT (elec_beta_num >= 0)
END_PROVIDER
BEGIN_PROVIDER [ integer, elec_num ]
BEGIN_DOC
! Number of electrons
END_DOC
implicit none
elec_num = elec_alpha_num + elec_beta_num
ASSERT ( elec_num > 0 )
END_PROVIDER
BEGIN_PROVIDER [ integer, elec_num_2, (2) ]
BEGIN_DOC
! Number of alpha and beta electrons in an array
END_DOC
elec_num_2(1) = elec_alpha_num
elec_num_2(2) = elec_beta_num
END_PROVIDER

337
eplf.irp.f Normal file
View File

@ -0,0 +1,337 @@
BEGIN_PROVIDER [ real, eplf_gamma ]
implicit none
BEGIN_DOC
! Value of the gaussian for the EPLF
END_DOC
eplf_gamma = 10.
END_PROVIDER
BEGIN_PROVIDER [ double precision, eplf_integral_matrix, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Array of all the <chi_i chi_j | exp(-gamma r^2)> for EPLF
END_DOC
integer :: i, j
double precision :: eplf_integral
do i=1,ao_num
do j=i,ao_num
eplf_integral_matrix(j,i) = eplf_integral(j,i,eplf_gamma,point)
eplf_integral_matrix(i,j) = eplf_integral_matrix(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, eplf_up_up ]
&BEGIN_PROVIDER [ double precision, eplf_up_dn ]
implicit none
BEGIN_DOC
! Value of the d_upup and d_updn quantities needed for EPLF
END_DOC
integer :: i, j, k, l, m, n
eplf_up_up = 0.
eplf_up_dn = 0.
PROVIDE mo_coef_transp
do m=1,ao_num
do n=1,ao_num
double precision :: ao_mn
ao_mn = eplf_integral_matrix(m,n)
if (ao_mn /= 0.d0) then
do k=1,ao_num
do l=1,ao_num
double precision :: ao_klmn
ao_klmn = ao_mn*ao_value_p(k)*ao_value_p(l)
if (ao_klmn /= 0.d0) then
do j=1,elec_beta_num
if (mo_coef_transp(j,n) /= 0.d0) then
do i=1,elec_beta_num
eplf_up_up = eplf_up_up + 2.d0*ao_klmn* &
mo_coef_transp(i,k)*mo_coef_transp(j,n) * &
(mo_coef_transp(i,l)*mo_coef_transp(j,m) - &
mo_coef_transp(i,m)*mo_coef_transp(j,l) )
enddo
endif
enddo
do j=1+elec_beta_num, elec_alpha_num
if (mo_coef_transp(j,n) /= 0.d0) then
do i=1,elec_beta_num
eplf_up_up = eplf_up_up + 2.d0*ao_klmn* &
mo_coef_transp(i,k)*mo_coef_transp(j,n) * &
(mo_coef_transp(i,l)*mo_coef_transp(j,m) - &
mo_coef_transp(i,m)*mo_coef_transp(j,l) )
enddo
do i=1+elec_beta_num,elec_alpha_num
eplf_up_up = eplf_up_up + ao_klmn* &
mo_coef_transp(i,k)*mo_coef_transp(j,n) * &
(mo_coef_transp(i,l)*mo_coef_transp(j,m) - &
mo_coef_transp(i,m)*mo_coef_transp(j,l) )
enddo
endif
enddo
do j=1,elec_beta_num
if ( (mo_coef_transp(j,n) /= 0.d0).and. &
(mo_coef_transp(j,m) /= 0.d0) ) then
do i=1,elec_alpha_num
eplf_up_dn = eplf_up_dn + 2.d0*ao_klmn* &
mo_coef_transp(i,k)*mo_coef_transp(j,n) * &
mo_coef_transp(i,l)*mo_coef_transp(j,m)
enddo
endif
enddo
endif
enddo
enddo
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, eplf_value ]
implicit none
BEGIN_DOC
! Value of the EPLF at the current point.
END_DOC
double precision :: aa, ab
aa = eplf_up_up
ab = eplf_up_dn
aa = min(1.d0,aa)
ab = min(1.d0,ab)
aa = max(1.d-30,aa)
ab = max(1.d-30,ab)
aa = -dlog(aa)/eplf_gamma
ab = -dlog(ab)/eplf_gamma
aa = dsqrt(aa)
ab = dsqrt(ab)
eplf_value = (aa-ab)/(aa+ab)
END_PROVIDER
double precision function eplf_integral_primitive_oneD_numeric(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer,parameter :: Npoints=1000
real :: x, xmin, xmax, dx
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
xmin = min(xa,xb)
xmax = max(xa,xb)
xmin = min(xmin,xr) - 10.
xmax = max(xmax,xr) + 10.
dx = (xmax-xmin)/real(Npoints)
real :: dtemp
dtemp = 0.
x = xmin
integer :: k
do k=1,Npoints
dtemp = dtemp + &
(x-xa)**i * (x-xb)**j * exp(-(a*(x-xa)**2+b*(x-xb)**2+gmma*(x-xr)**2))
x = x+dx
enddo
eplf_integral_primitive_oneD_numeric = dtemp*dx
end function
double precision function eplf_integral_numeric(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral(ao_prim_num_max,ao_prim_num_max)
double precision :: eplf_integral_primitive_oneD_numeric
real :: gmma, center(3)
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = &
eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1), &
gmma, &
center(1)) * &
eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2), &
gmma, &
center(2)) * &
eplf_integral_primitive_oneD_numeric( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3), &
gmma, &
center(3))
enddo
enddo
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = integral(p,q)*ao_coef(p,i)*ao_coef(q,j)
enddo
enddo
eplf_integral_numeric = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
eplf_integral_numeric = eplf_integral_numeric + integral(p,q)
enddo
enddo
end function
double precision function eplf_integral_primitive_oneD(a,xa,i,b,xb,j,gmma,xr)
implicit none
include 'constants.F'
real, intent(in) :: a,b,gmma ! Exponents
real, intent(in) :: xa,xb,xr ! Centers
integer, intent(in) :: i,j ! Powers of xa and xb
integer :: ii, jj, kk, ll
real :: xp1,xp
real :: p1,p
double precision :: S(0:i+1,0:j)
double precision :: inv_p, di(max(i,j)), dj(j), c, c1
ASSERT (a>0.)
ASSERT (b>0.)
ASSERT (i>=0)
ASSERT (j>=0)
! Gaussian product
call gaussian_product(a,xa,b,xb,c1,p1,xp1)
call gaussian_product(p1,xp1,gmma,xr,c,p,xp)
inv_p = 1.d0/p
S(0,0) = dsqrt(pi*inv_p)*c*c1
! Obara-Saika recursion
if (i>0) then
S(1,0) = (xp-xa) * S(0,0)
endif
if (j>0) then
S(0,1) = (xp-xb) * S(0,0)
endif
do ii=1,max(i,j)
di(ii) = 0.5d0*inv_p*dble(ii)
enddo
if (i>1) then
do ii=1,i-1
S(ii+1,0) = (xp-xa) * S(ii,0) + di(ii)*S(ii-1,0)
enddo
endif
if (j>1) then
do jj=1,j-1
S(0,jj+1) = (xp-xb) * S(0,jj) + di(jj)*S(0,jj-1)
enddo
endif
do jj=1,j
S(1,jj) = (xp-xa) * S(0,jj) + di(jj) * S(0,jj-1)
do ii=2,i
S(ii,jj) = (xp-xa) * S(ii-1,jj) + di(ii-1) * S(ii-2,jj) + di(jj) * S(ii-1,jj-1)
enddo
enddo
eplf_integral_primitive_oneD = S(i,j)
end function
double precision function eplf_integral(i,j,gmma,center)
implicit none
integer, intent(in) :: i, j
integer :: p,q,k
double precision :: integral(ao_prim_num_max,ao_prim_num_max)
double precision :: eplf_integral_primitive_oneD
real :: gmma, center(3)
ASSERT(i>0)
ASSERT(j>0)
ASSERT(i<=ao_num)
ASSERT(j<=ao_num)
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = &
eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),1), &
ao_power(i,1), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),1), &
ao_power(j,1), &
gmma, &
center(1)) * &
eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),2), &
ao_power(i,2), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),2), &
ao_power(j,2), &
gmma, &
center(2)) * &
eplf_integral_primitive_oneD( &
ao_expo(p,i), &
nucl_coord(ao_nucl(i),3), &
ao_power(i,3), &
ao_expo(q,j), &
nucl_coord(ao_nucl(j),3), &
ao_power(j,3), &
gmma, &
center(3))
enddo
enddo
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
integral(p,q) = integral(p,q)*ao_coef(p,i)*ao_coef(q,j)
enddo
enddo
eplf_integral = 0.
do q=1,ao_prim_num(j)
do p=1,ao_prim_num(i)
eplf_integral = eplf_integral + integral(p,q)
enddo
enddo
end function

136
mo.irp.f Normal file
View File

@ -0,0 +1,136 @@
BEGIN_PROVIDER [ integer, mo_closed_num ]
implicit none
BEGIN_DOC
! Number of closed shell Molecular orbitals
END_DOC
!$OMP CRITICAL (qcio_critical)
call qcio_get_mo_num_closed(mo_closed_num)
!$OMP END CRITICAL (qcio_critical)
ASSERT (mo_closed_num >= 0)
ASSERT (mo_closed_num <= elec_alpha_num)
ASSERT (mo_closed_num <= elec_beta_num)
END_PROVIDER
BEGIN_PROVIDER [ integer, mo_active_num ]
implicit none
BEGIN_DOC
! Number of active Molecular orbitals
END_DOC
!$OMP CRITICAL (qcio_critical)
call qcio_get_mo_num_active(mo_active_num)
!$OMP END CRITICAL (qcio_critical)
ASSERT (mo_active_num >= 0)
END_PROVIDER
BEGIN_PROVIDER [ integer, mo_num ]
implicit none
BEGIN_DOC
! Number of Molecular orbitals
END_DOC
mo_num = mo_closed_num + mo_active_num
ASSERT(mo_num > 0)
END_PROVIDER
BEGIN_PROVIDER [ real, mo_coef, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients
END_DOC
integer :: i, j
double precision :: buffer(ao_num,mo_tot_num)
!$OMP CRITICAL (qcio_critical)
call qcio_get_mo_matrix(buffer)
!$OMP END CRITICAL (qcio_critical)
do j=1,mo_num
do i=1,ao_num
mo_coef(i,j) = buffer(i,j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ logical, mo_non_zero, (mo_num,ao_num) ]
implicit none
BEGIN_DOC
! Values where the mo coefficients are /= 0.
END_DOC
integer :: i, j, k
do j=1,ao_num
do k=1,mo_num
mo_non_zero(k,j) = mo_coef_transp(j,k) /= 0.
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, mo_coef_transp, (mo_num,ao_num) ]
implicit none
BEGIN_DOC
! Transposed array of mo coefficients
END_DOC
integer :: i, j, k
do j=1,ao_num
do k=1,mo_num
mo_coef_transp(k,j) = mo_coef(j,k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ logical, mo_is_closed, (mo_num) ]
&BEGIN_PROVIDER [ logical, mo_is_active, (mo_num) ]
implicit none
BEGIN_DOC
! mo_is_closed : True if mo(i) is a closed-shell
! mo_is_active : True if mo(i) is an active orbital
END_DOC
character :: buffer(mo_tot_num)
integer :: i
do i=1,mo_num
if ( buffer(i) == 'c' ) then
mo_is_closed(i) = .True.
mo_is_active(i) = .False.
else if ( buffer(i) == 'a' ) then
mo_is_closed(i) = .False.
mo_is_active(i) = .True.
else
mo_is_closed(i) = .False.
mo_is_active(i) = .False.
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, mo_tot_num ]
BEGIN_DOC
! Total number of MOs in the QCIO file
END_DOC
!$OMP CRITICAL (qcio_critical)
call qcio_get_mo_num_orb_tot(mo_tot_num)
!$OMP END CRITICAL (qcio_critical)
ASSERT (mo_tot_num > 0)
END_PROVIDER

48
point.irp.f Normal file
View File

@ -0,0 +1,48 @@
BEGIN_PROVIDER [ real, point, (3) ]
implicit none
BEGIN_DOC
! Coordinates of the current point
END_DOC
point(1) = 0.
point(2) = 0.
point(3) = 0.
END_PROVIDER
BEGIN_PROVIDER [ real, point_nucl_dist_vec, (nucl_num,3) ]
implicit none
BEGIN_DOC
! Distance vector between the current point and the nuclei
END_DOC
integer :: k
do k=1,nucl_num
point_nucl_dist_vec(k,1) = point(1)-nucl_coord(k,1)
point_nucl_dist_vec(k,2) = point(2)-nucl_coord(k,2)
point_nucl_dist_vec(k,3) = point(3)-nucl_coord(k,3)
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, point_nucl_dist_2, (nucl_num) ]
implicit none
BEGIN_DOC
! Square of the distance between the current point and the nuclei
END_DOC
integer :: k,l
do k=1,nucl_num
point_nucl_dist_2(k) = 0.
do l=1,3
point_nucl_dist_2(k) = point_nucl_dist_2(k) + point_nucl_dist_vec(k,l)**2
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ real, point_nucl_dist, (nucl_num) ]
implicit none
BEGIN_DOC
! Distance between the current point and the nuclei
END_DOC
integer :: k
do k=1,nucl_num
point_nucl_dist(k) = sqrt(point_nucl_dist_2(k))
enddo
END_PROVIDER

18
test_1d.irp.f Normal file
View File

@ -0,0 +1,18 @@
program debug
PROVIDE ao_prim_num_max
read(*,*) eplf_gamma
TOUCH eplf_gamma
call run()
end
subroutine run
implicit none
point(1) = 0.
point(2) = 0.
integer :: i
do i=- 60,40
point(3) = real(i)/10.
TOUCH point
print *, point(3), eplf_value, eplf_up_up, eplf_up_dn
enddo
end