mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 14:08:24 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
163 lines
6.5 KiB
C++
163 lines
6.5 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012-2014 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./local/tail.hpp"
|
|
|
|
namespace triqs {
|
|
namespace gfs {
|
|
|
|
template <typename Var, typename RHS, bool IsView>
|
|
void assign_singularity_from_function(gf_impl<Var, tail, nothing, void, IsView, false> &s, RHS const &rhs) {
|
|
auto t = tail_omega(s.get_from_linear_index(0));
|
|
// a bit faster to first replace (some part of expression are precomputed).
|
|
clef::placeholder<0> x_;
|
|
//auto expr = rhs(x_, t);
|
|
//for (auto x : s.mesh()) s[x] = eval(expr, x_ = x);
|
|
for (auto x : s.mesh()) s[x] = rhs(x, t);
|
|
}
|
|
|
|
/// --------------------------- singularity ---------------------------------
|
|
|
|
template <typename V1, typename V2, typename Target> struct gf_default_singularity<cartesian_product<V1, V2>, Target> {
|
|
using S1 = typename gf_default_singularity<V1, Target>::type;
|
|
using S2 = typename gf_default_singularity<V2, Target>::type;
|
|
// type is nothing unless S1 is nothing and S2 is not, or 1 <-> 2
|
|
using type = std14::conditional_t < is_nothing<S1>() && (!is_nothing<S2>()), gf<V1, S2>,
|
|
std14::conditional_t < is_nothing<S2>() && (!is_nothing<S1>()), gf<V2, S1>, nothing >>
|
|
;
|
|
};
|
|
|
|
namespace gfs_implementation {
|
|
|
|
/// --------------------------- hdf5 ---------------------------------
|
|
|
|
template <typename Variable, typename Opt> struct h5_name<Variable, tail, nothing, Opt> {
|
|
static std::string invoke() { return "xxxxx"; }
|
|
};
|
|
|
|
template <typename Variable, typename Opt> struct h5_rw<Variable, tail, nothing, Opt> {
|
|
|
|
static void write(h5::group gr, gf_const_view<Variable, tail, nothing, Opt> g) {
|
|
// for (size_t i = 0; i < g.mesh().size(); ++i) h5_write(gr, std::to_string(i), g._data[i]);
|
|
// h5_write(gr,"symmetry",g._symmetry);
|
|
}
|
|
|
|
template <bool IsView> static void read(h5::group gr, gf_impl<Variable, tail, nothing, Opt, IsView, false> &g) {
|
|
// does not work : need to read the block name and remake the mesh...
|
|
// g._mesh = gf_mesh<block_index, Opt>(gr.get_all_subgroup_names());
|
|
// g._data.resize(g._mesh.size());
|
|
// if (g._data.size() != g._mesh.size()) TRIQS_RUNTIME_ERROR << "h5 read block gf : number of block mismatch";
|
|
// for (size_t i = 0; i < g.mesh().size(); ++i) h5_read(gr, g.mesh().domain().names()[i], g._data[i]);
|
|
// h5_read(gr,"symmetry",g._symmetry);
|
|
}
|
|
};
|
|
|
|
// --------------------------- data access ---------------------------------
|
|
|
|
template <typename Variable, typename Opt> struct data_proxy<Variable, tail, Opt> {
|
|
|
|
struct storage_t {
|
|
arrays::array<dcomplex, 4> data;
|
|
arrays::array<int, 2> mask;
|
|
int omin;
|
|
};
|
|
|
|
struct storage_view_t {
|
|
arrays::array_view<dcomplex, 4> data;
|
|
arrays::array_view<int, 2> mask;
|
|
int omin;
|
|
template<typename S> storage_view_t(S &s): data(s.data), mask(s.mask), omin(s.omin){}
|
|
};
|
|
|
|
struct storage_const_view_t {
|
|
arrays::array_const_view<dcomplex, 4> data;
|
|
arrays::array_const_view<int, 2> mask;
|
|
int omin;
|
|
template<typename S> storage_const_view_t(S &s): data(s.data), mask(s.mask), omin(s.omin){}
|
|
};
|
|
|
|
// from the shape of the mesh and the target, make the shape of the array. default is to glue them
|
|
// template <typename S1, typename S2> static auto join_shape(S1 const &s1, S2 const &s2) { return make_shape(join(s1, s2); }
|
|
|
|
template <typename S, typename RHS> static void assign_to_scalar(S &data, RHS &&rhs) { data() = std::forward<RHS>(rhs); }
|
|
template <typename ST, typename RHS> static void rebind(ST &data, RHS &&rhs) { data.rebind(rhs.data()); }
|
|
|
|
template <typename S> tail_view operator()(S &data, int i) const {
|
|
return {data.data(i, arrays::ellipsis()), data.mask, data.omin};
|
|
}
|
|
|
|
template <typename S> tail_const_view operator()(S const &data, int i) const {
|
|
return {data.data(i, arrays::ellipsis()), data.mask, data.omin};
|
|
}
|
|
};
|
|
|
|
// ------------------------------- Factory for data --------------------------------------------------
|
|
|
|
template <typename Variable, typename Opt> struct data_factory<Variable, tail, nothing, Opt> {
|
|
using mesh_t = gf_mesh<Variable, Opt>;
|
|
using gf_t = gf<Variable, tail>;
|
|
using target_shape_t = arrays::mini_vector<int, 2>;
|
|
// struct target_shape_t {};
|
|
using aux_t = nothing;
|
|
|
|
static typename gf_t::data_t make(mesh_t const &m, target_shape_t sh, aux_t) {
|
|
auto t = tail(sh); // build a defaut tail
|
|
// and duplicate it over the mesh size
|
|
return {arrays::array<dcomplex, 4>{t.data().shape().front_append(m.size())}, arrays::array<int, 2>{t.shape()},
|
|
t.order_min()};
|
|
}
|
|
};
|
|
|
|
// ------------------------------- Factory for singularity --------------------------------------------------
|
|
|
|
template <typename V1, typename V2, typename Target, typename Opt>
|
|
struct singularity_factory<cartesian_product<V1, V2>, Target, gf<V1, tail, nothing, void>, Opt> {
|
|
template <typename TargetShape>
|
|
static gf<V1, tail> make(gf_mesh<cartesian_product<V1, V2>, Opt> const &m, TargetShape shape) {
|
|
return {std::get<0>(m.components()), shape};
|
|
}
|
|
};
|
|
|
|
// ------------------------------- partial_eval --------------------------------------------------
|
|
|
|
template <typename Variable, typename Opt, bool IsConst>
|
|
struct partial_eval_impl<Variable, tail, nothing, Opt, IsConst> {
|
|
|
|
using gv_t = gf_view<Variable, tail, nothing, Opt, IsConst>;
|
|
template <int... pos, typename... T> static auto invoke(gv_t g, T const &... x) {
|
|
return invoke_impl(g, std14::index_sequence<pos...>(), x...);
|
|
}
|
|
|
|
template <typename T> static tail_view invoke_impl(gv_t g, std14::index_sequence<0>, T const &x) {
|
|
return g.get_from_linear_index(x);
|
|
}
|
|
|
|
template <typename T> static gv_t invoke_impl(gv_t g, std14::index_sequence<1>, T const &x) {
|
|
return g;
|
|
}
|
|
};
|
|
|
|
} // gfs_implementation
|
|
|
|
}}
|