/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see .
*
******************************************************************************/
#pragma once
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
namespace triqs {
namespace gfs {
template
void assign_singularity_from_function(gf_impl &s, RHS const &rhs) {
auto t = tail_omega(s.get_from_linear_index(0));
// a bit faster to first replace (some part of expression are precomputed).
clef::placeholder<0> x_;
//auto expr = rhs(x_, t);
//for (auto x : s.mesh()) s[x] = eval(expr, x_ = x);
for (auto x : s.mesh()) s[x] = rhs(x, t);
}
/// --------------------------- singularity ---------------------------------
template struct gf_default_singularity, Target> {
using S1 = typename gf_default_singularity::type;
using S2 = typename gf_default_singularity::type;
// type is nothing unless S1 is nothing and S2 is not, or 1 <-> 2
using type = std14::conditional_t < is_nothing() && (!is_nothing()), gf,
std14::conditional_t < is_nothing() && (!is_nothing()), gf, nothing >>
;
};
namespace gfs_implementation {
/// --------------------------- hdf5 ---------------------------------
template struct h5_name {
static std::string invoke() { return "xxxxx"; }
};
template struct h5_rw {
static void write(h5::group gr, gf_const_view g) {
// for (size_t i = 0; i < g.mesh().size(); ++i) h5_write(gr, std::to_string(i), g._data[i]);
// h5_write(gr,"symmetry",g._symmetry);
}
template static void read(h5::group gr, gf_impl &g) {
// does not work : need to read the block name and remake the mesh...
// g._mesh = gf_mesh(gr.get_all_subgroup_names());
// g._data.resize(g._mesh.size());
// if (g._data.size() != g._mesh.size()) TRIQS_RUNTIME_ERROR << "h5 read block gf : number of block mismatch";
// for (size_t i = 0; i < g.mesh().size(); ++i) h5_read(gr, g.mesh().domain().names()[i], g._data[i]);
// h5_read(gr,"symmetry",g._symmetry);
}
};
// --------------------------- data access ---------------------------------
template struct data_proxy {
struct storage_t {
arrays::array data;
arrays::array mask;
int omin;
};
struct storage_view_t {
arrays::array_view data;
arrays::array_view mask;
int omin;
template storage_view_t(S &s): data(s.data), mask(s.mask), omin(s.omin){}
};
struct storage_const_view_t {
arrays::array_const_view data;
arrays::array_const_view mask;
int omin;
template storage_const_view_t(S &s): data(s.data), mask(s.mask), omin(s.omin){}
};
// from the shape of the mesh and the target, make the shape of the array. default is to glue them
// template static auto join_shape(S1 const &s1, S2 const &s2) { return make_shape(join(s1, s2); }
template static void assign_to_scalar(S &data, RHS &&rhs) { data() = std::forward(rhs); }
template static void rebind(ST &data, RHS &&rhs) { data.rebind(rhs.data()); }
template tail_view operator()(S &data, int i) const {
return {data.data(i, arrays::ellipsis()), data.mask, data.omin};
}
template tail_const_view operator()(S const &data, int i) const {
return {data.data(i, arrays::ellipsis()), data.mask, data.omin};
}
};
// ------------------------------- Factory for data --------------------------------------------------
template struct data_factory {
using mesh_t = gf_mesh;
using gf_t = gf;
using target_shape_t = arrays::mini_vector;
// struct target_shape_t {};
using aux_t = nothing;
static typename gf_t::data_t make(mesh_t const &m, target_shape_t sh, aux_t) {
auto t = tail(sh); // build a defaut tail
// and duplicate it over the mesh size
return {arrays::array{t.data().shape().front_append(m.size())}, arrays::array{t.shape()},
t.order_min()};
}
};
// ------------------------------- Factory for singularity --------------------------------------------------
template
struct singularity_factory, Target, gf, Opt> {
template
static gf make(gf_mesh, Opt> const &m, TargetShape shape) {
return {std::get<0>(m.components()), shape};
}
};
// ------------------------------- partial_eval --------------------------------------------------
template
struct partial_eval_impl {
using gv_t = gf_view;
template static auto invoke(gv_t g, T const &... x) {
return invoke_impl(g, std14::index_sequence(), x...);
}
template static tail_view invoke_impl(gv_t g, std14::index_sequence<0>, T const &x) {
return g.get_from_linear_index(x);
}
template static gv_t invoke_impl(gv_t g, std14::index_sequence<1>, T const &x) {
return g;
}
};
} // gfs_implementation
}}