3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-09 07:33:47 +01:00
dft_tools/python/converters/hk_converter.py
2014-09-22 19:27:27 +02:00

304 lines
13 KiB
Python

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from types import *
import numpy
from pytriqs.archive import *
import pytriqs.utility.mpi as mpi
import string
from math import sqrt
def read_fortran_file (filename):
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
import os.path
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
for line in open(filename,'r') :
for x in line.replace('D','E').replace('(',' ').replace(')',' ').replace(',',' ').split() :
yield string.atof(x)
class HkConverter:
"""
Conversion from general H(k) file to an hdf5 file that can be used as input for the SumK_LDA class.
"""
def __init__(self, hk_file, hdf_file, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
"""
Init of the class.
on.
"""
assert type(hk_file)==StringType,"hk_file must be a filename"
self.hdf_file = hdf_file
self.lda_file = hk_file
self.lda_subgrp = lda_subgrp
self.symm_subgrp = symm_subgrp
# Checks if h5 file is there and repacks it if wanted:
import os.path
if (os.path.exists(self.hdf_file) and repacking):
self.__repack()
def convert_dmft_input(self, first_real_part_matrix = True, only_upper_triangle = False, weights_in_file = False):
"""
Reads the input files, and stores the data in the HDFfile
"""
# Read and write only on the master node
if not (mpi.is_master_node()): return
mpi.report("Reading input from %s..."%self.lda_file)
# R is a generator : each R.Next() will return the next number in the file
R = read_fortran_file(self.lda_file)
try:
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
n_k = int(R.next()) # read the number of k points
k_dep_projection = 0
SP = 0 # no spin-polarision
SO = 0 # no spin-orbit
charge_below = 0.0 # total charge below energy window is set to 0
density_required = R.next() # density required, for setting the chemical potential
symm_op = 0 # No symmetry groups for the k-sum
# the information on the non-correlated shells is needed for defining dimension of matrices:
n_shells = int(R.next()) # number of shells considered in the Wanniers
# corresponds to index R in formulas
# now read the information about the shells:
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
# corresponds to index R in formulas
# now read the information about the shells:
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
use_rotations = 0
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
# Representative representations are read from file
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
T = []
for icrsh in range(self.n_inequiv_corr_shells):
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
# The transformation matrix:
# is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
T[icrsh] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
# Spin blocks to be read:
n_spin_blocs = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
# define the number of n_orbitals for all k points: it is the number of total bands and independent of k!
n_orb = sum([ shells[ish][3] for ish in range(n_shells) ])
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * n_orb
# Initialise the projectors:
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
for ik in xrange(n_k):
for icrsh in range(n_corr_shells):
for isp in range(n_spin_blocs):
# calculate the offset:
offset = 0
no = 0
for i in range(n_shells):
if (no==0):
if ((shells[i][0]==corr_shells[icrsh][0]) and (shells[i][1]==corr_shells[icrsh][1])):
no = corr_shells[icrsh][3]
else:
offset += shells[i][3]
proj_mat[ik,isp,icrsh,0:no,offset:offset+no] = numpy.identity(no)
# now define the arrays for weights and hopping ...
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
if (weights_in_file):
# weights in the file
for ik in xrange(n_k) : bz_weights[ik] = R.next()
# if the sum over spins is in the weights, take it out again!!
sm = sum(bz_weights)
bz_weights[:] /= sm
# Grab the H
for isp in range(n_spin_blocs):
for ik in xrange(n_k) :
no = n_orbitals[ik,isp]
if (first_real_part_matrix):
for i in xrange(no):
if (only_upper_triangle):
istart = i
else:
istart = 0
for j in xrange(istart,no):
hopping[ik,isp,i,j] = R.next()
for i in xrange(no):
if (only_upper_triangle):
istart = i
else:
istart = 0
for j in xrange(istart,no):
hopping[ik,isp,i,j] += R.next() * 1j
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
else:
for i in xrange(no):
if (only_upper_triangle):
istart = i
else:
istart = 0
for j in xrange(istart,no):
hopping[ik,isp,i,j] = R.next()
hopping[ik,isp,i,j] += R.next() * 1j
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
# keep some things that we need for reading parproj:
self.n_shells = n_shells
self.shells = shells
self.n_corr_shells = n_corr_shells
self.corr_shells = corr_shells
self.n_spin_blocs = n_spin_blocs
self.n_orbitals = n_orbitals
self.n_k = n_k
self.SO = SO
self.SP = SP
self.energy_unit = energy_unit
except StopIteration : # a more explicit error if the file is corrupted.
raise "HK Converter : reading file lda_file failed!"
R.close()
#-----------------------------------------
# Store the input into HDF5:
ar = HDFArchive(self.hdf_file,'a')
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
# The subgroup containing the data. If it does not exist, it is created.
# If it exists, the data is overwritten!!!
ar[self.lda_subgrp]['energy_unit'] = energy_unit
ar[self.lda_subgrp]['n_k'] = n_k
ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
ar[self.lda_subgrp]['SP'] = SP
ar[self.lda_subgrp]['SO'] = SO
ar[self.lda_subgrp]['charge_below'] = charge_below
ar[self.lda_subgrp]['density_required'] = density_required
ar[self.lda_subgrp]['symm_op'] = symm_op
ar[self.lda_subgrp]['n_shells'] = n_shells
ar[self.lda_subgrp]['shells'] = shells
ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
ar[self.lda_subgrp]['corr_shells'] = corr_shells
ar[self.lda_subgrp]['use_rotations'] = use_rotations
ar[self.lda_subgrp]['rot_mat'] = rot_mat
ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
ar[self.lda_subgrp]['n_reps'] = n_reps
ar[self.lda_subgrp]['dim_reps'] = dim_reps
ar[self.lda_subgrp]['T'] = T
ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
ar[self.lda_subgrp]['proj_mat'] = proj_mat
ar[self.lda_subgrp]['bz_weights'] = bz_weights
ar[self.lda_subgrp]['hopping'] = hopping
del ar
def __repack(self):
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
the hdf5 linking is broken!!!"""
import subprocess
if not (mpi.is_master_node()): return
mpi.report("Repacking the file %s"%self.hdf_file)
retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
if (retcode!=0):
mpi.report("h5repack failed!")
else:
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
def inequiv_shells(self,lst):
"""
The number of inequivalent shells is calculated from lst, and a mapping is given as
map(i_corr_shells) = i_inequiv_corr_shells
invmap(i_inequiv_corr_shells) = i_corr_shells
in order to put the Self energies to all equivalent shells, and for extracting Gloc
"""
tmp = []
self.shellmap = [0 for i in range(len(lst))]
self.invshellmap = [0]
self.n_inequiv_corr_shells = 1
tmp.append( lst[0][1:3] )
if (len(lst)>1):
for i in range(len(lst)-1):
fnd = False
for j in range(self.n_inequiv_corr_shells):
if (tmp[j]==lst[i+1][1:3]):
fnd = True
self.shellmap[i+1] = j
if (fnd==False):
self.shellmap[i+1] = self.n_inequiv_corr_shells
self.n_inequiv_corr_shells += 1
tmp.append( lst[i+1][1:3] )
self.invshellmap.append(i+1)