3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00

Changes to old interface files to comply with new gf_struct

Minor tidy-up too.
This commit is contained in:
Priyanka Seth 2014-09-22 19:24:33 +02:00
parent f803c13285
commit 906398894a
6 changed files with 405 additions and 503 deletions

View File

@ -28,10 +28,10 @@ import string
from math import sqrt
def Read_Fortran_File (filename):
def read_fortran_file (filename):
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
import os.path
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
for line in open(filename,'r') :
for x in line.replace('D','E').replace('(',' ').replace(')',' ').replace(',',' ').split() :
yield string.atof(x)
@ -40,22 +40,18 @@ def Read_Fortran_File (filename):
class HkConverter:
"""
Conversion from general H(k) file to an hdf5 file, that can be used as input for the SumK_LDA class.
Conversion from general H(k) file to an hdf5 file that can be used as input for the SumK_LDA class.
"""
def __init__(self, hk_file, hdf_file, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
"""
Init of the class. Variable Filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so
Init of the class.
on.
"""
assert type(hk_file)==StringType,"hk_file must be a filename"
self.hdf_file = hdf_file
self.lda_file = hk_file
#self.Symm_file = Filename+'.symqmc'
#self.Parproj_file = Filename+'.parproj'
#self.Symmpar_file = Filename+'.sympar'
#self.Band_file = Filename+'.outband'
self.lda_subgrp = lda_subgrp
self.symm_subgrp = symm_subgrp
@ -72,12 +68,12 @@ class HkConverter:
"""
if not (mpi.is_master_node()): return # do it only on master:
# Read and write only on the master node
if not (mpi.is_master_node()): return
mpi.report("Reading input from %s..."%self.lda_file)
# Read and write only on Master!!!
# R is a generator : each R.Next() will return the next number in the file
R = Read_Fortran_File(self.lda_file)
R = read_fortran_file(self.lda_file)
try:
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
n_k = int(R.next()) # read the number of k points
@ -101,7 +97,6 @@ class HkConverter:
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
use_rotations = 0
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
@ -109,16 +104,13 @@ class HkConverter:
# Representative representations are read from file
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
T = []
for icrsh in range(self.n_inequiv_corr_shells):
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
# The transformation matrix:
# it is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
T = []
for icrsh in range(self.n_inequiv_corr_shells):
#for ish in xrange(self.N_inequiv_corr_shells):
# The transformation matrix:
# is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
@ -131,27 +123,21 @@ class HkConverter:
# Spin blocks to be read:
n_spin_blocks = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
n_spin_blocs = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
# define the number of N_Orbitals for all k points: it is the number of total bands and independent of k!
n_orb = sum([ shells[ish][3] for ish in range(n_shells)])
#n_orbitals = [ [n_orb for isp in range(n_spin_blocks)] for ik in xrange(n_k)]
n_orbitals = numpy.ones([n_k,n_spin_blocks],numpy.int) * n_orb
#print N_Orbitals
# define the number of n_orbitals for all k points: it is the number of total bands and independent of k!
n_orb = sum([ shells[ish][3] for ish in range(n_shells) ])
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * n_orb
# Initialise the projectors:
#proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
# for icrsh in range (n_corr_shells)]
# for isp in range(n_spin_blocks)]
# for ik in range(n_k) ]
proj_mat = numpy.zeros([n_k,n_spin_blocks,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
for ik in xrange(n_k):
for icrsh in range(n_corr_shells):
for isp in range(n_spin_blocks):
for isp in range(n_spin_blocs):
# calculate the offset:
offset = 0
@ -169,9 +155,7 @@ class HkConverter:
# now define the arrays for weights and hopping ...
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
# for isp in range(n_spin_blocks)] for ik in xrange(n_k) ]
hopping = numpy.zeros([n_k,n_spin_blocks,max(n_orbitals),max(n_orbitals)],numpy.complex_)
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
if (weights_in_file):
# weights in the file
@ -181,11 +165,9 @@ class HkConverter:
sm = sum(bz_weights)
bz_weights[:] /= sm
# Grab the H
for ik in xrange(n_k) :
for isp in range(n_spin_blocks):
for isp in range(n_spin_blocs):
for ik in xrange(n_k) :
no = n_orbitals[ik,isp]
if (first_real_part_matrix):
@ -220,24 +202,22 @@ class HkConverter:
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
#keep some things that we need for reading parproj:
# keep some things that we need for reading parproj:
self.n_shells = n_shells
self.shells = shells
self.n_corr_shells = n_corr_shells
self.corr_shells = corr_shells
self.n_spin_blocks = n_spin_blocks
self.n_spin_blocs = n_spin_blocs
self.n_orbitals = n_orbitals
self.n_k = n_k
self.SO = SO
self.SP = SP
self.energy_unit = energy_unit
except StopIteration : # a more explicit error if the file is corrupted.
raise "SumK_LDA : reading file HMLT_file failed!"
raise "HK Converter : reading file lda_file failed!"
R.close()
#print Proj_Mat[0]
#-----------------------------------------
# Store the input into HDF5:
ar = HDFArchive(self.hdf_file,'a')
@ -276,7 +256,7 @@ class HkConverter:
def __repack(self):
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
Should only be used BEFORE the first invokation of HDF_Archive in the program, otherwise
Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
the hdf5 linking is broken!!!"""
import subprocess

View File

@ -30,7 +30,7 @@ import string
def read_fortran_file (filename):
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
import os.path
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
for line in open(filename,'r') :
for x in line.replace('D','E').split() :
yield string.atof(x)
@ -39,13 +39,12 @@ def read_fortran_file (filename):
class Wien2kConverter:
"""
Conversion from Wien2k output to an hdf5 file, that can be used as input for the SumkLDA class.
Conversion from Wien2k output to an hdf5 file that can be used as input for the SumkLDA class.
"""
def __init__(self, filename, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
"""
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so
on.
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so on.
"""
assert type(filename)==StringType,"LDA_file must be a filename"
@ -71,10 +70,10 @@ class Wien2kConverter:
"""
if not (mpi.is_master_node()): return # do it only on master:
# Read and write only on the master node
if not (mpi.is_master_node()): return
mpi.report("Reading input from %s..."%self.lda_file)
# Read and write only on Master!!!
# R is a generator : each R.Next() will return the next number in the file
R = read_fortran_file(self.lda_file)
try:
@ -91,15 +90,13 @@ class Wien2kConverter:
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
# corresponds to index R in formulas
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
#shells = numpy.array(shells)
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
# corresponds to index R in formulas
# now read the information about the shells:
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
#corr_shells = numpy.array(corr_shells)
use_rotations = 1
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
@ -120,7 +117,7 @@ class Wien2kConverter:
# Read here the infos for the transformation of the basis:
# Read here the info for the transformation of the basis:
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
T = []
@ -128,10 +125,8 @@ class Wien2kConverter:
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
# The transformation matrix:
# it is of dimension 2l+1, if no SO, and 2*(2l+1) with SO!!
#T = []
#for ish in xrange(self.n_inequiv_corr_shells):
# The transformation matrix:
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
@ -151,21 +146,14 @@ class Wien2kConverter:
# read the list of n_orbitals for all k points
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
#n_orbitals = [ [0 for isp in range(n_spin_blocs)] for ik in xrange(n_k)]
for isp in range(n_spin_blocs):
for ik in xrange(n_k):
#n_orbitals[ik][isp] = int(R.next())
n_orbitals[ik,isp] = int(R.next())
#print n_orbitals
# Initialise the projectors:
#proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
# for icrsh in range (n_corr_shells)]
# for isp in range(n_spin_blocs)]
# for ik in range(n_k) ]
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
for ik in xrange(n_k):
@ -175,39 +163,34 @@ class Wien2kConverter:
for isp in range(n_spin_blocs):
for i in xrange(no):
for j in xrange(n_orbitals[ik][isp]):
#proj_mat[ik][isp][icrsh][i,j] = R.next()
proj_mat[ik,isp,icrsh,i,j] = R.next()
# now Imag part:
for isp in range(n_spin_blocs):
for i in xrange(no):
for j in xrange(n_orbitals[ik][isp]):
#proj_mat[ik][isp][icrsh][i,j] += 1j * R.next()
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
# now define the arrays for weights and hopping ...
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
# for isp in range(n_spin_blocs)] for ik in xrange(n_k) ]
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
# weights in the file
for ik in xrange(n_k) : bz_weights[ik] = R.next()
# if the sum over spins is in the weights, take it out again!!
sm = sum(bz_weights)
bz_weights[:] /= sm
# Grab the H
# we use now the convention of a DIAGONAL Hamiltonian!!!!
for isp in range(n_spin_blocs):
for ik in xrange(n_k) :
no = n_orbitals[ik][isp]
no = n_orbitals[ik,isp]
for i in xrange(no):
#hopping[ik][isp][i,i] = R.next() * energy_unit
hopping[ik,isp,i,i] = R.next() * energy_unit
#keep some things that we need for reading parproj:
# keep some things that we need for reading parproj:
self.n_shells = n_shells
self.shells = shells
self.n_corr_shells = n_corr_shells
@ -219,12 +202,10 @@ class Wien2kConverter:
self.SP = SP
self.energy_unit = energy_unit
except StopIteration : # a more explicit error if the file is corrupted.
raise "SumkLDA : reading file HMLT_file failed!"
raise "Wien2k_converter : reading file lda_file failed!"
R.close()
#print proj_mat[0]
#-----------------------------------------
# Store the input into HDF5:
ar = HDFArchive(self.hdf_file,'a')
@ -279,25 +260,17 @@ class Wien2kConverter:
for isp in range(self.n_spin_blocs) ]
R = read_fortran_file(self.parproj_file)
#try:
n_parproj = [int(R.next()) for i in range(self.n_shells)]
n_parproj = numpy.array(n_parproj)
# Initialise P, here a double list of matrices:
#proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], self.n_orbitals[ik][isp]], numpy.complex_)
# for ir in range(n_parproj[ish])]
# for ish in range (self.n_shells) ]
# for isp in range(self.n_spin_blocs) ]
# for ik in range(self.n_k) ]
proj_mat_pc = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(self.n_orbitals)],numpy.complex_)
rot_mat_all = [numpy.identity(self.shells[ish][3],numpy.complex_) for ish in xrange(self.n_shells)]
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
for ish in range(self.n_shells):
#print ish
# read first the projectors for this orbital:
for ik in xrange(self.n_k):
for ir in range(n_parproj[ish]):
@ -337,8 +310,6 @@ class Wien2kConverter:
if (self.SP):
rot_mat_all_time_inv[ish] = int(R.next())
#except StopIteration : # a more explicit error if the file is corrupted.
# raise "Wien2kConverter: reading file for Projectors failed!"
R.close()
#-----------------------------------------
@ -378,10 +349,6 @@ class Wien2kConverter:
n_orbitals[ik,isp] = int(R.next())
# Initialise the projectors:
#proj_mat = [ [ [numpy.zeros([self.corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
# for icrsh in range (self.n_corr_shells)]
# for isp in range(self.n_spin_blocs)]
# for ik in range(n_k) ]
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max(numpy.array(self.corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
@ -399,8 +366,6 @@ class Wien2kConverter:
for j in xrange(n_orbitals[ik,isp]):
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
# for isp in range(self.n_spin_blocs)] for ik in xrange(n_k) ]
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
# Grab the H
@ -416,11 +381,6 @@ class Wien2kConverter:
n_parproj = numpy.array(n_parproj)
# Initialise P, here a double list of matrices:
#proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], n_orbitals[ik][isp]], numpy.complex_)
# for ir in range(n_parproj[ish])]
# for ish in range (self.n_shells) ]
# for isp in range(self.n_spin_blocs) ]
# for ik in range(n_k) ]
proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(n_orbitals)],numpy.complex_)
@ -439,7 +399,7 @@ class Wien2kConverter:
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
except StopIteration : # a more explicit error if the file is corrupted.
raise "SumkLDA : reading file HMLT_file failed!"
raise "Wien2k_converter : reading file band_file failed!"
R.close()
# reading done!
@ -448,18 +408,11 @@ class Wien2kConverter:
# Store the input into HDF5:
ar = HDFArchive(self.hdf_file,'a')
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
# The subgroup containing the data. If it does not exist, it is created.
# If it exists, the data is overwritten!!!
thingstowrite = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(self.bands_subgrp,it,it)
#ar[self.bands_subgrp]['n_k'] = n_k
#ar[self.bands_subgrp]['n_orbitals'] = n_orbitals
#ar[self.bands_subgrp]['proj_mat'] = proj_mat
#self.proj_mat = proj_mat
#self.n_orbitals = n_orbitals
#self.n_k = n_k
#self.hopping = hopping
del ar
@ -501,7 +454,7 @@ class Wien2kConverter:
mat[in_s][orb][i,j] += 1j * R.next() # imaginary part
# determine the inequivalent shells:
#SHOULD BE FINALLY REMOVED, PUT IT FOR ALL ORBITALS!!!!!
#SHOULD BE FINALLY REMOVED, PUT IT FOR ALL ORBITALS!!!!! (PS: FIXME?)
#self.inequiv_shells(orbits)
mat_tinv = [numpy.identity(orbits[orb][3],numpy.complex_)
for orb in range(n_orbits)]
@ -519,7 +472,7 @@ class Wien2kConverter:
except StopIteration : # a more explicit error if the file is corrupted.
raise "Symmetry : reading file failed!"
raise "Wien2k_converter : reading file symm_file failed!"
R.close()

File diff suppressed because it is too large Load Diff

View File

@ -24,23 +24,17 @@ from types import *
import numpy
import pytriqs.utility.dichotomy as dichotomy
from pytriqs.gf.local import *
#from pytriqs.applications.impurity_solvers.operators import *
from pytriqs.operators import *
import pytriqs.utility.mpi as mpi
from datetime import datetime
#from pytriqs.applications.dft.symmetry import *
#from pytriqs.applications.dft.sumk_lda import SumkLDA
from symmetry import *
from sumk_lda import SumkLDA
import string
def read_fortran_file (filename):
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
import os.path
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
for line in open(filename,'r') :
for x in line.replace('D','E').split() :
yield string.atof(x)
@ -56,12 +50,12 @@ class SumkLDATools(SumkLDA):
self.Gupf_refreq = None
SumkLDA.__init__(self,hdf_file=hdf_file,mu=mu,h_field=h_field,use_lda_blocks=use_lda_blocks,lda_data=lda_data,
symm_corr_data=symm_corr_data,par_proj_data=par_proj_data,symm_par_data=symm_par_data,
bands_data=bands_data)
bands_data=bands_data)
def downfold_pc(self,ik,ir,ish,sig,gf_to_downfold,gf_inp):
"""Downfolding a block of the Greens function"""
gf_downfolded = gf_inp.copy()
isp = self.names_to_ind[self.SO][sig] # get spin index for proj. matrices
dim = self.shells[ish][3]
@ -87,15 +81,15 @@ class SumkLDATools(SumkLDA):
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate(),gf_rotated,self.rot_mat_all[ish].transpose())
else:
gf_rotated.from_L_G_R(self.rot_mat_all[ish],gf_rotated,self.rot_mat_all[ish].conjugate().transpose())
elif (direction=='toLocal'):
if ((self.rot_mat_all_time_inv[ish]==1)and(self.SO)):
gf_rotated <<= gf_rotated.transpose()
gf_rotated.from_L_G_R(self.rot_mat_all[ish].transpose(),gf_rotated,self.rot_mat_all[ish].conjugate())
else:
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate().transpose(),gf_rotated,self.rot_mat_all[ish])
return gf_rotated
@ -107,7 +101,7 @@ class SumkLDATools(SumkLDA):
bln = self.block_names[self.SO]
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
if (with_Sigma):
if (with_Sigma):
assert self.Sigma_imp[0].note == 'ReFreq', "Real frequency Sigma needed for lattice_gf_realfreq!"
stmp = self.add_dc()
else:
@ -139,7 +133,7 @@ class SumkLDATools(SumkLDA):
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[1]),n_points=mesh[2]) for a,al in gf_struct]
self.Gupf_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.Gupf_refreq.zero()
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
self.Gupf_refreq <<= Omega + 1j*broadening
@ -163,7 +157,7 @@ class SumkLDATools(SumkLDA):
def check_input_dos(self, om_min, om_max, n_om, beta=10, broadening=0.01):
delta_om = (om_max-om_min)/(n_om-1)
om_mesh = numpy.zeros([n_om],numpy.float_)
@ -189,59 +183,59 @@ class SumkLDATools(SumkLDA):
glist = lambda : [ GfReFreq(indices = al, window = (om_min,om_max), n_points = n_om) for a,al in self.gf_struct_corr[icrsh]]
Gloc.append(BlockGf(name_list = b_list, block_list = glist(),make_copies=False))
for icrsh in xrange(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero
for ik in xrange(self.n_k):
Gupf=self.lattice_gf_realfreq(ik=ik,mu=self.chemical_potential,broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False)
Gupf *= self.bz_weights[ik]
# non-projected DOS
for iom in range(n_om):
for sig,gf in Gupf:
for iom in range(n_om):
for sig,gf in Gupf:
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOS[sig][iom] += asd
for icrsh in xrange(self.n_corr_shells):
tmp = Gloc[icrsh].copy()
for sig,gf in tmp: tmp[sig] <<= self.downfold(ik,icrsh,sig,Gupf[sig],gf) # downfolding G
Gloc[icrsh] += tmp
if (self.symm_op!=0): Gloc = self.Symm_corr.symmetrize(Gloc)
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] <<= self.rotloc(icrsh,gf,direction='toLocal')
# Gloc can now also be used to look at orbitally resolved quantities
for ish in range(self.n_inequiv_corr_shells):
for sig,gf in Gloc[self.invshellmap[ish]]: # loop over spins
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535)
# output:
if (mpi.is_master_node()):
for bn in self.block_names[self.SO]:
f=open('DOS%s.dat'%bn, 'w')
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOS[bn][i]))
f.close()
f.close()
for ish in range(self.n_inequiv_corr_shells):
f=open('DOS%s_proj%s.dat'%(bn,ish),'w')
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOSproj[ish][bn][i]))
f.close()
f.close()
for i in range(self.corr_shells[self.invshellmap[ish]][3]):
for j in range(i,self.corr_shells[self.invshellmap[ish]][3]):
Fname = 'DOS'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
f=open(Fname,'w')
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][bn][iom,i,j]))
f.close()
def read_par_proj_input_from_hdf(self):
"""
@ -268,7 +262,7 @@ class SumkLDATools(SumkLDA):
mu = self.chemical_potential
gf_struct_proj = [ [ (al, range(self.shells[i][3])) for al in self.block_names[self.SO] ] for i in xrange(self.n_shells) ]
Gproj = [BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in gf_struct_proj[ish] ], make_copies = False )
Gproj = [BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in gf_struct_proj[ish] ], make_copies = False )
for ish in xrange(self.n_shells)]
for ish in range(self.n_shells): Gproj[ish].zero()
@ -295,32 +289,32 @@ class SumkLDATools(SumkLDA):
S *= self.bz_weights[ik]
# non-projected DOS
for iom in range(n_om):
for iom in range(n_om):
for sig,gf in S: DOS[sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
#projected DOS:
for ish in xrange(self.n_shells):
tmp = Gproj[ish].copy()
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
Gproj[ish] += tmp
# collect data from mpi:
for sig in DOS:
DOS[sig] = mpi.all_reduce(mpi.world,DOS[sig],lambda x,y : x+y)
for ish in xrange(self.n_shells):
Gproj[ish] <<= mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
mpi.barrier()
mpi.barrier()
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
# rotation to local coord. system:
if (self.use_rotations):
for ish in xrange(self.n_shells):
for sig,gf in Gproj[ish]: Gproj[ish][sig] <<= self.rotloc_all(ish,gf,direction='toLocal')
for ish in range(self.n_shells):
for sig,gf in Gproj[ish]:
for sig,gf in Gproj[ish]:
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535)
@ -330,14 +324,14 @@ class SumkLDATools(SumkLDA):
for bn in self.block_names[self.SO]:
f=open('./DOScorr%s.dat'%bn, 'w')
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOS[bn][i]))
f.close()
f.close()
# partial
for ish in range(self.n_shells):
f=open('DOScorr%s_proj%s.dat'%(bn,ish),'w')
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOSproj[ish][bn][i]))
f.close()
for i in range(self.shells[ish][3]):
for j in range(i,self.shells[ish][3]):
Fname = './DOScorr'+bn+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat'
@ -349,7 +343,7 @@ class SumkLDATools(SumkLDA):
def spaghettis(self,broadening,shift=0.0,plot_range=None, ishell=None, invert_Akw=False, fermi_surface=False):
""" Calculates the correlated band structure with a real-frequency self energy.
""" Calculates the correlated band structure with a real-frequency self energy.
ATTENTION: Many things from the original input file are are overwritten!!!"""
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
@ -358,13 +352,13 @@ class SumkLDATools(SumkLDA):
if not retval: return retval
if fermi_surface: ishell=None
# print hamiltonian for checks:
if ((self.SP==1)and(self.SO==0)):
f1=open('hamup.dat','w')
f2=open('hamdn.dat','w')
for ik in xrange(self.n_k):
for ik in xrange(self.n_k):
for i in xrange(self.n_orbitals[ik,0]):
f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
for i in xrange(self.n_orbitals[ik,1]):
@ -381,7 +375,7 @@ class SumkLDATools(SumkLDA):
f.write('\n')
f.close()
#=========================================
# calculate A(k,w):
@ -419,17 +413,17 @@ class SumkLDATools(SumkLDA):
for ik in xrange(self.n_k):
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
S = self.lattice_gf_realfreq(ik=ik,mu=mu,broadening=broadening)
if (ishell is None):
# non-projected A(k,w)
for iom in range(n_om):
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
if fermi_surface:
for sig,gf in S: Akw[sig][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (M[1]-M[0])
else:
for sig,gf in S: Akw[sig][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
Akw[sig][ik,iom] += ik*shift # shift Akw for plotting in xmgrace
else:
# projected A(k,w):
@ -438,26 +432,26 @@ class SumkLDATools(SumkLDA):
for ir in xrange(self.n_parproj[ishell]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ishell,sig,S[sig],gf)
Gproj += tmp
# TO BE FIXED:
# rotate to local frame
#if (self.use_rotations):
# for sig,gf in Gproj: Gproj[sig] <<= self.rotloc(0,gf,direction='toLocal')
for iom in range(n_om):
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
for ish in range(self.shells[ishell][3]):
for ibn in bln:
Akw[ibn][ish,ik,iom] = Gproj[ibn].data[iom,ish,ish].imag/(-3.1415926535)
# END k-LOOP
if (mpi.is_master_node()):
if (ishell is None):
for ibn in bln:
# loop over GF blocs:
if (invert_Akw):
maxAkw=Akw[ibn].max()
minAkw=Akw[ibn].min()
@ -472,10 +466,10 @@ class SumkLDATools(SumkLDA):
for ik in range(self.n_k):
if fermi_surface:
if (invert_Akw):
Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw)
Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw)
f.write('%s %s\n'%(ik,Akw[ibn][ik,0]))
else:
for iom in range(n_om):
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
if (invert_Akw):
Akw[ibn][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,iom] - maxAkw)
@ -485,21 +479,21 @@ class SumkLDATools(SumkLDA):
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ik,iom]))
f.write('\n')
f.close()
else:
for ibn in bln:
for ish in range(self.shells[ishell][3]):
if (invert_Akw):
maxAkw=Akw[ibn][ish,:,:].max()
minAkw=Akw[ibn][ish,:,:].min()
f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w')
f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w')
for ik in range(self.n_k):
for iom in range(n_om):
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
if (invert_Akw):
Akw[ibn][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ish,ik,iom] - maxAkw)
@ -509,20 +503,22 @@ class SumkLDATools(SumkLDA):
f.write('%s %s %s\n'%(ik,M[iom],Akw[ibn][ish,ik,iom]))
f.write('\n')
f.close()
def constr_Sigma_real_axis(self, filename, hdf=True, hdf_dataset='SigmaReFreq',n_om=0,orb=0, tol_mesh=1e-6):
"""Uses Data from files to construct Sigma (or GF) on the real axis."""
if not hdf:
# read sigma from text files
#first get the mesh out of one of the files:
if (len(self.gf_struct_solver[orb][0][1])==1):
Fname = filename+'_'+self.gf_struct_solver[orb][0][0]+'.dat'
if not hdf: # then read sigma from text files
# first get the mesh out of any one of the files:
bl = self.gf_struct_solver[orb].items()[0][0] # block name
ol = self.gf_struct_solver[orb].items()[0][1] # list of orbital indices
if (len(ol)==1): # if blocks are of size one
Fname = filename+'_'+bl+'.dat'
else:
Fname = filename+'_'+self.gf_struct_solver[orb][0][0]+'/'+str(self.gf_struct_solver[orb][0][1][0])+'_'+str(self.gf_struct_solver[orb][0][1][0])+'.dat'
Fname = filename+'_'+bl+'/'+str(ol[0])+'_'+str(ol[0])+'.dat'
R = read_fortran_file(Fname)
mesh = numpy.zeros([n_om],numpy.float_)
@ -542,12 +538,11 @@ class SumkLDATools(SumkLDA):
assert abs(i*bin+mesh[0]-mesh[i]) < tol_mesh, 'constr_Sigma_ME: real-axis mesh is non-uniform!'
# construct Sigma
a_list = [a for a,al in self.gf_struct_solver[orb]]
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[n_om-1]),n_points=n_om) for a,al in self.gf_struct_solver[orb]]
a_list = [a for a,al in self.gf_struct_solver[orb].iteritems()]
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[n_om-1]),n_points=n_om) for a,al in self.gf_struct_solver[orb].iteritems()]
SigmaME = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
#read Sigma
for i,g in SigmaME:
mesh=[w for w in g.mesh]
for iL in g.indices:
@ -568,9 +563,8 @@ class SumkLDATools(SumkLDA):
R.close()
else:
else: # read sigma from hdf
# read sigma from hdf
omega_min=0.0
omega_max=0.0
n_om=0
@ -588,8 +582,8 @@ class SumkLDATools(SumkLDA):
mpi.barrier()
# construct Sigma on other nodes
if (not mpi.is_master_node()):
a_list = [a for a,al in self.gf_struct_solver[orb]]
glist = lambda : [ GfReFreq(indices = al, window=(omega_min,omega_max),n_points=n_om) for a,al in self.gf_struct_solver[orb]]
a_list = [a for a,al in self.gf_struct_solver[orb].iteritems()]
glist = lambda : [ GfReFreq(indices = al, window=(omega_min,omega_max),n_points=n_om) for a,al in self.gf_struct_solver[orb].iteritems()]
SigmaME = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
# pass SigmaME to other nodes
SigmaME = mpi.bcast(SigmaME)
@ -599,23 +593,23 @@ class SumkLDATools(SumkLDA):
return SigmaME
def partial_charges(self,beta=40):
"""Calculates the orbitally-resolved density matrix for all the orbitals considered in the input.
The theta-projectors are used, hence case.parproj data is necessary"""
#thingstoread = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
#retval = self.read_input_from_HDF(SubGrp=self.par_proj_data,thingstoread=thingstoread)
retval = self.read_par_proj_input_from_hdf()
if not retval: return retval
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symm_par_data)
# Density matrix in the window
bln = self.block_names[self.SO]
ntoi = self.names_to_ind[self.SO]
self.dens_mat_window = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
self.dens_mat_window = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
for isp in range(len(bln)) ] # init the density matrix
mu = self.chemical_potential
@ -633,7 +627,7 @@ class SumkLDATools(SumkLDA):
ikarray=numpy.array(range(self.n_k))
#print mpi.rank, mpi.slice_array(ikarray)
#print "K-Sum starts on node",mpi.rank," at ",datetime.now()
for ik in mpi.slice_array(ikarray):
#print mpi.rank, ik, datetime.now()
S = self.lattice_gf_matsubara(ik=ik,mu=mu,beta=beta)
@ -644,7 +638,7 @@ class SumkLDATools(SumkLDA):
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
Gproj[ish] += tmp
#print "K-Sum done on node",mpi.rank," at ",datetime.now()
#collect data from mpi:
for ish in xrange(self.n_shells):
@ -656,7 +650,7 @@ class SumkLDATools(SumkLDA):
# Symmetrisation:
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
#print "Symmetrisation done on node",mpi.rank," at ",datetime.now()
for ish in xrange(self.n_shells):
# Rotation to local:
@ -667,11 +661,9 @@ class SumkLDATools(SumkLDA):
for sig,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[sig])
self.dens_mat_window[isp][ish] = Gproj[ish].density()[sig]
isp+=1
# add Density matrices to get the total:
dens_mat = [ [ self.dens_mat_below[ntoi[bln[isp]]][ish]+self.dens_mat_window[isp][ish] for ish in range(self.n_shells)]
for isp in range(len(bln)) ]
return dens_mat

View File

@ -60,24 +60,24 @@ class Symmetry:
#broadcasting
for it in thingstoread: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
# now define the mapping of orbitals:
# self.map[iorb]=jorb gives the permutation of the orbitals as given in the list, when the
# self.map[iorb]=jorb gives the permutation of the orbitals as given in the list, when the
# permutation of the atoms is done:
self.n_orbits = len(self.orbits)
self.map = [ [0 for iorb in range(self.n_orbits)] for in_s in range(self.n_s) ]
for in_s in range(self.n_s):
for iorb in range(self.n_orbits):
srch = copy.deepcopy(self.orbits[iorb])
srch[0] = self.perm[in_s][self.orbits[iorb][0]-1]
self.map[in_s][iorb] = self.orbits.index(srch)
def symmetrize(self,obj):
assert isinstance(obj,list),"obj has to be a list of objects!"
assert len(obj)==self.n_orbits,"obj has to be a list of the same length as defined in the init"
@ -88,14 +88,14 @@ class Symmetry:
# if not a BlockGf, we assume it is a matrix (density matrix), has to be complex since self.mat is complex!
#symm_obj = [ numpy.zeros([self.orbits[iorb][3],self.orbits[iorb][3]],numpy.complex_) for iorb in range(self.n_orbits) ]
symm_obj = [ copy.deepcopy(obj[i]) for i in range(len(obj)) ]
for iorb in range(self.n_orbits):
if (type(symm_obj[iorb])==DictType):
for ii in symm_obj[iorb]: symm_obj[iorb][ii] *= 0.0
else:
symm_obj[iorb] *= 0.0
for in_s in range(self.n_s):
for iorb in range(self.n_orbits):
@ -104,13 +104,9 @@ class Symmetry:
dim = self.orbits[iorb][3]
jorb = self.map[in_s][iorb]
if (isinstance(obj[0],BlockGf)):
#if l==0:
# symm_obj[jorb] += obj[iorb]
#else:
tmp = obj[iorb].copy()
if (self.time_inv[in_s]): tmp <<= tmp.transpose()
for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat[in_s][iorb],tmp[sig],self.mat[in_s][iorb].conjugate().transpose())
@ -122,9 +118,6 @@ class Symmetry:
if (type(obj[iorb])==DictType):
for ii in obj[iorb]:
#if (l==0):
# symm_obj[jorb][ii] += obj[iorb][ii]/self.n_s
#else:
if (self.time_inv[in_s]==0):
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii]),
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
@ -132,20 +125,17 @@ class Symmetry:
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii].conjugate()),
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
else:
#if (l==0):
# symm_obj[jorb] += obj[iorb]/self.n_s
#else:
if (self.time_inv[in_s]==0):
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb]),self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
else:
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb].conjugate()),
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
# This does not what it is supposed to do, check how this should work:
# This does not what it is supposed to do, check how this should work:
# if ((self.SO==0) and (self.SP==0)):
# # add time inv:
#mpi.report("Add time inversion")
@ -156,7 +146,7 @@ class Symmetry:
# for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat_tinv[iorb],tmp[sig],self.mat_tinv[iorb].transpose().conjugate())
# symm_obj[iorb] += tmp
# symm_obj[iorb] /= 2.0
#
#
# else:
# if (type(symm_obj[iorb])==DictType):
# for ii in symm_obj[iorb]:
@ -167,10 +157,10 @@ class Symmetry:
# symm_obj[iorb] += numpy.dot(numpy.dot(self.mat_tinv[iorb],symm_obj[iorb].conjugate()),
# self.mat_tinv[iorb].transpose().conjugate())
# symm_obj[iorb] /= 2.0
return symm_obj

View File

@ -8,7 +8,7 @@ import copy
import pytriqs.utility.mpi as mpi
class TransBasis:
'''Computates rotations into a new basis, in order to make certain quantities diagonal.'''
'''Computates rotations into a new basis in order to make certain quantities diagonal.'''
def __init__(self, SK=None, hdf_datafile=None):
@ -19,18 +19,18 @@ class TransBasis:
if (hdf_datafile==None):
mpi.report("Give SK instance or HDF filename!")
return 0
Converter = Wien2kConverter(filename=hdf_datafile,repacking=False)
Converter.convert_dmft_input()
del Converter
self.SK = SumkLDA(hdf_file=hdf_datafile+'.h5',use_lda_blocks=False)
else:
self.SK = SK
self.T = copy.deepcopy(self.SK.T[0])
self.w = numpy.identity(SK.corr_shells[0][3])
def __call__(self, prop_to_be_diagonal = 'eal'):
@ -49,10 +49,10 @@ class TransBasis:
# now calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
#return numpy.dot(self.w.transpose().conjugate(),numpy.dot(eal['up'],self.w))
else:
self.eig,self.w = numpy.linalg.eigh(eal['ud'])
@ -60,17 +60,17 @@ class TransBasis:
# now calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
#MPI.report("SO not implemented yet!")
#return 0
# measure for the 'unity' of the transformation:
wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size
return wsqr
def rotate_gf(self,gf_to_rot):
'''rotates a given GF into the new basis'''
'''Rotates a given GF into the new basis.'''
# build a full GF
gfrotated = BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = gf_to_rot.mesh)) for a,al in self.SK.gf_struct_corr[0] ], make_copies = False)
@ -78,12 +78,11 @@ class TransBasis:
# transform the CTQMC blocks to the full matrix:
s = self.SK.shellmap[0] # s is the index of the inequivalent shell corresponding to icrsh
for ibl in range(len(self.SK.gf_struct_solver[s])):
for i in range(len(self.SK.gf_struct_solver[s][ibl][1])):
for j in range(len(self.SK.gf_struct_solver[s][ibl][1])):
bl = self.SK.gf_struct_solver[s][ibl][0]
ind1 = self.SK.gf_struct_solver[s][ibl][1][i]
ind2 = self.SK.gf_struct_solver[s][ibl][1][j]
for bl, orblist in self.gf_struct_solver[s].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] <<= gf_to_rot[bl][ind1,ind2]
# Rotate using the matrix w
@ -92,27 +91,26 @@ class TransBasis:
gfreturn = gf_to_rot.copy()
# Put back into CTQMC basis:
for ibl in range(len(self.SK.gf_struct_solver[0])):
for i in range(len(self.SK.gf_struct_solver[0][ibl][1])):
for j in range(len(self.SK.gf_struct_solver[0][ibl][1])):
bl = self.SK.gf_struct_solver[0][ibl][0]
ind1 = self.SK.gf_struct_solver[0][ibl][1][i]
ind2 = self.SK.gf_struct_solver[0][ibl][1][j]
for bl, orblist in self.gf_struct_solver[s].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfreturn[bl][ind1,ind2] <<= gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
return gfreturn
def write_trans_file(self, filename):
'''writes the new transformation into a file, readable for dmftproj.'''
'''Writes the new transformation into a file readable by dmftproj.'''
f=open(filename,'w')
Tnew = self.T.conjugate()
N = self.SK.corr_shells[0][3]
if (self.SK.SO==0):
for i in range(N):
st = ''
for k in range(N):
@ -120,14 +118,14 @@ class TransBasis:
st += " %9.6f"%(Tnew[i,k].imag)
for k in range(2*N):
st += " 0.0"
if (i<(N-1)):
f.write("%s\n"%(st))
else:
st1=st.replace(' ','*',1)
f.write("%s\n"%(st1))
for i in range(N):
st = ''
for k in range(2*N):
@ -135,7 +133,7 @@ class TransBasis:
for k in range(N):
st += " %9.6f"%(Tnew[i,k].real)
st += " %9.6f"%(Tnew[i,k].imag)
if (i<(N-1)):
f.write("%s\n"%(st))
else:
@ -149,15 +147,12 @@ class TransBasis:
for k in range(N):
st += " %9.6f"%(Tnew[i,k].real)
st += " %9.6f"%(Tnew[i,k].imag)
if (i<(N-1)):
f.write("%s\n"%(st))
else:
st1=st.replace(' ','*',1)
f.write("%s\n"%(st1))
#MPI.report("SO not implemented!")
f.close()