3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 22:18:23 +01:00

gf: update gf imfreq for g( om - nu) case

DRAFT : to be tested further...

- update gf<imfreq>
- write a specific mesh for matsubara frequencies
- now the cast series is :
  mesh_pt --> matsubara_freq --> complex<double>
- matsubara_freq is just the matsubara frequency
- arithmetic of the mesh_pt casted to matsubara_freq
- arithmetic of matsubara_freq is casted to complex, except + and -,
  which are kept as matsubara_freq.
- evaluator now accept : int, mesh_pt, and matsubara_freq
  for matsubara_freq : for negative omega, use conjugation
  for omega outside windows, evaluate the tail on omega.
- as a result : g( om - nu) where om, nu are 2 meshes points,
  is the extrapolation outside the grid if necessary.
- updated tests
- added evaluation for tail.
This commit is contained in:
Olivier Parcollet 2013-11-05 08:56:42 +01:00
parent 184274c893
commit 9ce291d640
5 changed files with 330 additions and 60 deletions

View File

@ -36,6 +36,7 @@ int main() {
TEST( G( 0) ) ;
triqs::clef::placeholder<0> om_;
triqs::clef::placeholder<1> nu_;
TEST( G(om_) ) ;
TEST( eval(G(om_), om_=0) ) ;
@ -121,6 +122,25 @@ int main() {
H5::H5File file("ess_gf.h5", H5F_ACC_TRUNC );
h5_write(file, "g", G);
//
{
auto G0w = gf<imfreq, scalar_valued>{{beta, Fermion, 100}};
auto D0w = gf<imfreq, scalar_valued>{{beta, Boson, 100}};
auto Sigma_w = gf<imfreq, scalar_valued>{{beta, Fermion, 100}};
G0w(om_) << 1 / (om_ - 3);
for (auto const& nu : D0w.mesh()) Sigma_w(om_) << 2 * G0w(om_ - nu);
}
//
{
auto G0w = gf<imfreq, matrix_valued>{{beta, Fermion, 100}, {1,1}};
auto D0w = gf<imfreq, matrix_valued>{{beta, Boson, 100}, {1,1}};
auto Sigma_w = gf<imfreq, matrix_valued>{{beta, Fermion, 100}, {1,1}} ;
G0w(om_) << 1 / (om_ - 3);
for (auto const& nu : D0w.mesh()) Sigma_w(om_) << 2 * G0w(om_ - nu);
}
}
TRIQS_CATCH_AND_ABORT;

View File

@ -21,49 +21,101 @@
#ifndef TRIQS_GF_DOMAIN_MATSUBARA_H
#define TRIQS_GF_DOMAIN_MATSUBARA_H
#include "../tools.hpp"
#include "../meshes/mesh_tools.hpp"
namespace triqs { namespace gfs {
namespace triqs {
namespace gfs {
// --------------- One matsubara frequency, with its arithmetics -------------------------
// all operations are done by casting to complex, except addition and substraction of matsubara_freq
struct matsubara_freq : public arith_ops_by_cast<matsubara_freq, std::complex<double>> {
int n;
double beta;
statistic_enum statistic;
matsubara_freq(int const &n_, double beta_, statistic_enum stat_) : n(n_), beta(beta_), statistic(stat_) {}
using cast_t = std::complex<double>;
operator cast_t() const {
return {0, M_PI * (2 * n + (statistic == Fermion ? 1 : 0)) / beta};
}
};
inline matsubara_freq operator+(matsubara_freq const &x, matsubara_freq const &y) {
return {x.n + y.n + (x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
}
inline matsubara_freq operator-(matsubara_freq const &x, matsubara_freq const &y) {
// std::cout << x.n - y.n - (~x.statistic & y.statistic)<< std::endl;
return {x.n - y.n - (~x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
}
/*
#define IMPL_OP(OP) \
template <typename Y> auto operator OP(matsubara_freq const &x, Y &&y)->decltype(std::complex<double>{}) { \
return std::complex<double>(x) OP std::forward<Y>(y); \
} \
template <typename Y> \
auto operator OP(Y &&y, matsubara_freq const &x)->decltype(std::forward<Y>(y) OP std::complex<double>{}) { \
return std::forward<Y>(y) OP std::complex<double>(x); \
}
IMPL_OP(+);
IMPL_OP(-);
IMPL_OP(*);
IMPL_OP(/ );
#undef IMPL_OP
*/
/*
* template <typename Y> auto operator OP(matsubara_freq const &x, Y &&y)->decltype(std::complex<double>{}) { \
return std::complex<double>(x) OP std::forward<Y>(y); \
} \
template <typename Y> \
auto operator OP(Y &&y, matsubara_freq const &x) \
->TYPE_DISABLE_IF(decltype(std::forward<Y>(y) OP std::complex<double>{}), \
std::is_same<typename std::remove_cv<typename std::remove_reference<Y>::type>::type, matsubara_freq>) { \
return std::forward<Y>(y) OP std::complex<double>(x); \
}
*/
//---------------------------------------------------------------------------------------------------------
/// The domain
template<bool IsComplex>
struct matsubara_domain {
typedef typename mpl::if_c<IsComplex, std::complex<double>, double>::type point_t;
template <bool IsFreq> struct matsubara_domain {
using point_t = typename std::conditional<IsFreq, std::complex<double>, double>::type;
double beta;
statistic_enum statistic;
matsubara_domain() = default;
matsubara_domain (double Beta, statistic_enum s): beta(Beta), statistic(s){
if(beta<0)TRIQS_RUNTIME_ERROR<<"Matsubara domain construction : beta <0 : beta ="<< beta <<"\n";
matsubara_domain(double Beta, statistic_enum s) : beta(Beta), statistic(s) {
if (beta < 0) TRIQS_RUNTIME_ERROR << "Matsubara domain construction : beta <0 : beta =" << beta << "\n";
}
matsubara_domain(matsubara_domain const &) = default;
matsubara_domain(matsubara_domain<!IsComplex> const &x): beta(x.beta), statistic(x.statistic) {}
bool operator == (matsubara_domain const & D) const { return ((std::abs(beta - D.beta)<1.e-15) && (statistic == D.statistic));}
matsubara_domain(matsubara_domain<!IsFreq> const &x) : beta(x.beta), statistic(x.statistic) {}
bool operator==(matsubara_domain const &D) const { return ((std::abs(beta - D.beta) < 1.e-15) && (statistic == D.statistic)); }
/// Write into HDF5
friend void h5_write (h5::group fg, std::string subgroup_name, matsubara_domain const & d) {
h5::group gr = fg.create_group(subgroup_name);
h5_write(gr,"beta",d.beta);
h5_write(gr,"statistic",(d.statistic==Fermion ? "F" : "B"));
friend void h5_write(h5::group fg, std::string subgroup_name, matsubara_domain const &d) {
h5::group gr = fg.create_group(subgroup_name);
h5_write(gr, "beta", d.beta);
h5_write(gr, "statistic", (d.statistic == Fermion ? "F" : "B"));
}
/// Read from HDF5
friend void h5_read (h5::group fg, std::string subgroup_name, matsubara_domain & d){
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_domain &d) {
h5::group gr = fg.open_group(subgroup_name);
double beta; std::string statistic;
h5_read(gr,"beta",beta);
h5_read(gr,"statistic",statistic);
d = matsubara_domain(beta,(statistic=="F" ? Fermion : Boson));
double beta;
std::string statistic;
h5_read(gr, "beta", beta);
h5_read(gr, "statistic", statistic);
d = matsubara_domain(beta, (statistic == "F" ? Fermion : Boson));
}
// BOOST Serialization
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("beta",beta);
ar & boost::serialization::make_nvp("statistic",statistic);
}
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
ar &boost::serialization::make_nvp("beta", beta);
ar &boost::serialization::make_nvp("statistic", statistic);
}
};
}}
}
}
#endif

View File

@ -24,56 +24,105 @@
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./local/no_tail.hpp"
#include "./domains/matsubara.hpp"
#include "./meshes/linear.hpp"
#include "./meshes/matsubara_freq.hpp"
#include "./evaluators.hpp"
namespace triqs { namespace gfs {
namespace triqs {
namespace gfs {
struct imfreq {};
template<typename Opt> struct gf_mesh<imfreq,Opt> : linear_mesh<matsubara_domain<true>> {
typedef linear_mesh<matsubara_domain<true>> B;
static double m1(double beta) { return std::acos(-1)/beta;}
template <typename Opt> struct gf_mesh<imfreq, Opt> : matsubara_freq_mesh {
using B = matsubara_freq_mesh;
static double m1(double beta) { return std::acos(-1) / beta; }
gf_mesh() = default;
gf_mesh(B const &x) : B(x) {} // enables also construction from another Opt
gf_mesh (typename B::domain_t const & d, int Nmax = 1025) :
B(d, d.statistic==Fermion?m1(d.beta):0, d.statistic==Fermion?(2*Nmax+1)*m1(d.beta): 2*Nmax*m1(d.beta), Nmax, without_last){}
gf_mesh (double beta, statistic_enum S, int Nmax = 1025) : gf_mesh({beta,S}, Nmax){}
gf_mesh(typename B::domain_t const &d, int Nmax = 1025) : B(d, Nmax, true) {}
gf_mesh(double beta, statistic_enum S, int Nmax = 1025) : gf_mesh({beta, S}, Nmax) {}
};
namespace gfs_implementation {
namespace gfs_implementation {
//singularity
template<> struct singularity<imfreq,matrix_valued,void> { typedef local::tail type;};
template<> struct singularity<imfreq,scalar_valued,void> { typedef local::tail type;};
// singularity
template <> struct singularity<imfreq, matrix_valued, void> {
typedef local::tail type;
};
template <> struct singularity<imfreq, scalar_valued, void> {
typedef local::tail type;
};
//h5 name
template<typename Opt> struct h5_name<imfreq,matrix_valued,Opt> { static std::string invoke(){ return "ImFreq";}};
// h5 name
template <typename Opt> struct h5_name<imfreq, matrix_valued, Opt> {
static std::string invoke() { return "ImFreq"; }
};
/// --------------------------- evaluator ---------------------------------
template<> struct evaluator_fnt_on_mesh<imfreq> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_simple);
// simple evaluation : take the point on the grid...
template <> struct evaluator_fnt_on_mesh<imfreq> {
long n;
evaluator_fnt_on_mesh() = default;
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, long p) { n = p; }
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, matsubara_freq_mesh::mesh_point_t const &p) { n = p.n; }
template <typename F> auto operator()(F const &f) const DECL_AND_RETURN(f(n));
};
template<typename Opt, typename Target>
struct evaluator<imfreq,Target,Opt> { // factorize and template on the long instead of double ?
public :
static constexpr int arity = 1;
template<typename G>
auto operator()(G const * g, int n) const DECL_AND_RETURN((*g)[n]);
// ------------- evaluator -------------------
// handle the case where the matsu. freq is out of grid...
template <typename Target, typename Opt> struct evaluator<imfreq, Target, Opt> {
static constexpr int arity = 1;
template <typename G> auto operator()(G const *g, int n) const DECL_AND_RETURN((*g)[n]);
template <typename G>
auto operator()(G const *g, matsubara_freq_mesh::mesh_point_t const &p) const DECL_AND_RETURN((*g)[p.index()]);
template<typename G>
auto operator() (G const * g, linear_mesh<matsubara_domain<true>>::mesh_point_t const & p)
const DECL_AND_RETURN((*g)[p.index()]);
template<typename G>
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
// dispatch for 2x2 cases : matrix/scalar and tail/no_tail ( true means no_tail)
template <typename G>
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::false_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
return g->singularity().evaluate(f)(0, 0);
}
template <typename G>
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::true_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
return 0;
}
template <typename G>
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::false_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && (-f.n < g->mesh().size()))
return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
else
return g->singularity().evaluate(f);
}
template <typename G>
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::true_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && (-f.n < g->mesh().size())) return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
auto r = arrays::matrix<std::complex<double>>{get_target_shape(*g)};
r() = 0;
return r;
}
template <typename G>
auto operator()(G const *g, matsubara_freq const &f) const
DECL_AND_RETURN(_call_impl(g, f, Target{}, std::integral_constant<bool, std::is_same<Opt, no_tail>::value>{}));
template <typename G> typename G::singularity_t const &operator()(G const *g, freq_infty const &) const {
return g->singularity();
}
};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<imfreq,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
template<typename Opt> struct data_proxy<imfreq,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
template <typename Opt> struct data_proxy<imfreq, matrix_valued, Opt> : data_proxy_array<std::complex<double>, 3> {};
template <typename Opt> struct data_proxy<imfreq, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
} // gfs_implementation
}}
} // gfs_implementation
}
}
#endif

View File

@ -126,6 +126,20 @@ namespace triqs { namespace gfs { namespace local {
operator freq_infty() const { return freq_infty(); }
/// Evaluate the tail to sum_{n=order_min}^ordermax M_n/omega^n
arrays::matrix<dcomplex> evaluate(dcomplex const &omega) const {
auto r = arrays::matrix<dcomplex>{this->shape()};
r() = 0;
auto omin = this->order_min();
auto omax = this->order_max(); // precompute since long to do...
auto _ = arrays::range{};
for (int u = omax; u >= omin; --u)
r = r / omega +
const_mv_type{this->_data(u - omin, _, _)}; // need to make a matrix view because otherwise + is not defined
r /= pow(omega, omin);
return r;
}
/// Save in txt file: doc the format ? ---> prefer serialization or hdf5 !
void save(std::string file, bool accumulate=false) const {}

View File

@ -0,0 +1,135 @@
/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "./mesh_tools.hpp"
#include "../domains/matsubara.hpp"
namespace triqs {
namespace gfs {
//----------------------------------- The mesh -----------------------------------------
struct matsubara_freq_mesh {
using domain_t = matsubara_domain<true>;
using index_t = int;
using domain_pt_t = typename domain_t::point_t;
matsubara_freq_mesh() : _dom(), n_max(0), _positive_only(true) {}
explicit matsubara_freq_mesh(domain_t dom, int n_pts, bool positive_only = true)
: _dom(std::move(dom)), n_max(n_pts), _positive_only(positive_only) {}
domain_t const &domain() const { return _dom; }
size_t size() const { return (_positive_only ? n_max : 2 * n_max + 1); }
/// Conversions point <-> index <-> linear_index
domain_pt_t index_to_point(index_t ind) const {
return 1_j * M_PI * (2 * ind + (_dom.statistic == Fermion ? 1 : 0)) / _dom.beta;
}
public:
size_t index_to_linear(index_t ind) const { return ind; }
/// The wrapper for the mesh point
struct mesh_point_t : tag::mesh_point, public arith_ops_by_cast<mesh_point_t, matsubara_freq> {
index_t n;
double beta;
statistic_enum statistic;
index_t n_max;
mesh_point_t()= default;
mesh_point_t(matsubara_freq_mesh const &mesh, index_t const &index_)
: n(index_), beta(mesh.domain().beta), statistic(mesh.domain().statistic), n_max(mesh.size()) {}
mesh_point_t(index_t const &index_, double beta_, statistic_enum stat_, index_t n_max_)
: n(index_), beta(beta_), statistic(stat_), n_max(n_max_) {}
void advance() { ++n; }
using cast_t = domain_pt_t;
operator cast_t() const { return 1_j * M_PI * (2 * n + (statistic == Fermion ? 1 : 0)) / beta; }
using cast1_t = matsubara_freq;
operator cast1_t() const { return {n,beta,statistic};}
size_t linear_index() const { return n; }
size_t index() const { return n; }
bool at_end() const { return (n == n_max); }
void reset() { n = 0; }
};
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
/// Iterating on all the points...
using const_iterator = mesh_pt_generator<matsubara_freq_mesh>;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// Mesh comparison
bool operator==(matsubara_freq_mesh const &M) const {
return (std::make_tuple(_dom, n_max, _positive_only, n_max) == std::make_tuple(M._dom, M.n_max, M._positive_only, n_max));
}
bool operator!=(matsubara_freq_mesh const &M) const { return !(operator==(M)); }
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, matsubara_freq_mesh const &m) {
h5::group gr = fg.create_group(subgroup_name);
h5_write(gr, "domain", m.domain());
h5_write(gr, "size", m.size());
//h5_write(gr, "start_at_0", m._positive_only);
// kept for backward compatibility
auto beta = m.domain().beta;
h5_write(gr, "min", Fermion ? M_PI / beta : 0);
h5_write(gr, "max", ((Fermion ? 1 : 0) + 2 * m.size()) * M_PI / beta);
h5_write(gr, "kind", 2);
}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_freq_mesh &m) {
h5::group gr = fg.open_group(subgroup_name);
typename matsubara_freq_mesh::domain_t dom;
int L;
bool s = true;
h5_read(gr, "domain", dom);
h5_read(gr, "size", L);
//h5_read(gr, "start_at_0", s);
m = matsubara_freq_mesh{std::move(dom), L, s};
}
// BOOST Serialization
friend class boost::serialization::access;
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
ar &boost::serialization::make_nvp("domain", _dom);
ar &boost::serialization::make_nvp("size", n_max);
ar &boost::serialization::make_nvp("kind", _positive_only);
}
friend std::ostream &operator<<(std::ostream &sout, matsubara_freq_mesh const &m) {
return sout << "Matsubara Freq Mesh of size " << m.size();
}
private:
domain_t _dom;
int n_max;
bool _positive_only;
};
}
}