3
0
mirror of https://github.com/triqs/dft_tools synced 2024-10-31 19:23:45 +01:00
dft_tools/triqs/gfs/imfreq.hpp
Olivier Parcollet 9ce291d640 gf: update gf imfreq for g( om - nu) case
DRAFT : to be tested further...

- update gf<imfreq>
- write a specific mesh for matsubara frequencies
- now the cast series is :
  mesh_pt --> matsubara_freq --> complex<double>
- matsubara_freq is just the matsubara frequency
- arithmetic of the mesh_pt casted to matsubara_freq
- arithmetic of matsubara_freq is casted to complex, except + and -,
  which are kept as matsubara_freq.
- evaluator now accept : int, mesh_pt, and matsubara_freq
  for matsubara_freq : for negative omega, use conjugation
  for omega outside windows, evaluate the tail on omega.
- as a result : g( om - nu) where om, nu are 2 meshes points,
  is the extrapolation outside the grid if necessary.
- updated tests
- added evaluation for tail.
2013-11-18 23:41:32 +01:00

129 lines
5.3 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_MATSUBARA_FREQ_H
#define TRIQS_GF_MATSUBARA_FREQ_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./local/no_tail.hpp"
#include "./meshes/matsubara_freq.hpp"
#include "./evaluators.hpp"
namespace triqs {
namespace gfs {
struct imfreq {};
template <typename Opt> struct gf_mesh<imfreq, Opt> : matsubara_freq_mesh {
using B = matsubara_freq_mesh;
static double m1(double beta) { return std::acos(-1) / beta; }
gf_mesh() = default;
gf_mesh(B const &x) : B(x) {} // enables also construction from another Opt
gf_mesh(typename B::domain_t const &d, int Nmax = 1025) : B(d, Nmax, true) {}
gf_mesh(double beta, statistic_enum S, int Nmax = 1025) : gf_mesh({beta, S}, Nmax) {}
};
namespace gfs_implementation {
// singularity
template <> struct singularity<imfreq, matrix_valued, void> {
typedef local::tail type;
};
template <> struct singularity<imfreq, scalar_valued, void> {
typedef local::tail type;
};
// h5 name
template <typename Opt> struct h5_name<imfreq, matrix_valued, Opt> {
static std::string invoke() { return "ImFreq"; }
};
/// --------------------------- evaluator ---------------------------------
// simple evaluation : take the point on the grid...
template <> struct evaluator_fnt_on_mesh<imfreq> {
long n;
evaluator_fnt_on_mesh() = default;
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, long p) { n = p; }
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, matsubara_freq_mesh::mesh_point_t const &p) { n = p.n; }
template <typename F> auto operator()(F const &f) const DECL_AND_RETURN(f(n));
};
// ------------- evaluator -------------------
// handle the case where the matsu. freq is out of grid...
template <typename Target, typename Opt> struct evaluator<imfreq, Target, Opt> {
static constexpr int arity = 1;
template <typename G> auto operator()(G const *g, int n) const DECL_AND_RETURN((*g)[n]);
template <typename G>
auto operator()(G const *g, matsubara_freq_mesh::mesh_point_t const &p) const DECL_AND_RETURN((*g)[p.index()]);
// dispatch for 2x2 cases : matrix/scalar and tail/no_tail ( true means no_tail)
template <typename G>
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::false_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
return g->singularity().evaluate(f)(0, 0);
}
template <typename G>
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::true_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
return 0;
}
template <typename G>
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::false_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && (-f.n < g->mesh().size()))
return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
else
return g->singularity().evaluate(f);
}
template <typename G>
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
std::true_type) const {
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
if ((f.n < 0) && (-f.n < g->mesh().size())) return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
auto r = arrays::matrix<std::complex<double>>{get_target_shape(*g)};
r() = 0;
return r;
}
template <typename G>
auto operator()(G const *g, matsubara_freq const &f) const
DECL_AND_RETURN(_call_impl(g, f, Target{}, std::integral_constant<bool, std::is_same<Opt, no_tail>::value>{}));
template <typename G> typename G::singularity_t const &operator()(G const *g, freq_infty const &) const {
return g->singularity();
}
};
/// --------------------------- data access ---------------------------------
template <typename Opt> struct data_proxy<imfreq, matrix_valued, Opt> : data_proxy_array<std::complex<double>, 3> {};
template <typename Opt> struct data_proxy<imfreq, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
} // gfs_implementation
}
}
#endif