mirror of
https://github.com/triqs/dft_tools
synced 2024-12-26 06:14:14 +01:00
gf: update gf imfreq for g( om - nu) case
DRAFT : to be tested further... - update gf<imfreq> - write a specific mesh for matsubara frequencies - now the cast series is : mesh_pt --> matsubara_freq --> complex<double> - matsubara_freq is just the matsubara frequency - arithmetic of the mesh_pt casted to matsubara_freq - arithmetic of matsubara_freq is casted to complex, except + and -, which are kept as matsubara_freq. - evaluator now accept : int, mesh_pt, and matsubara_freq for matsubara_freq : for negative omega, use conjugation for omega outside windows, evaluate the tail on omega. - as a result : g( om - nu) where om, nu are 2 meshes points, is the extrapolation outside the grid if necessary. - updated tests - added evaluation for tail.
This commit is contained in:
parent
184274c893
commit
9ce291d640
@ -36,6 +36,7 @@ int main() {
|
|||||||
TEST( G( 0) ) ;
|
TEST( G( 0) ) ;
|
||||||
|
|
||||||
triqs::clef::placeholder<0> om_;
|
triqs::clef::placeholder<0> om_;
|
||||||
|
triqs::clef::placeholder<1> nu_;
|
||||||
|
|
||||||
TEST( G(om_) ) ;
|
TEST( G(om_) ) ;
|
||||||
TEST( eval(G(om_), om_=0) ) ;
|
TEST( eval(G(om_), om_=0) ) ;
|
||||||
@ -121,6 +122,25 @@ int main() {
|
|||||||
H5::H5File file("ess_gf.h5", H5F_ACC_TRUNC );
|
H5::H5File file("ess_gf.h5", H5F_ACC_TRUNC );
|
||||||
h5_write(file, "g", G);
|
h5_write(file, "g", G);
|
||||||
|
|
||||||
|
//
|
||||||
|
{
|
||||||
|
auto G0w = gf<imfreq, scalar_valued>{{beta, Fermion, 100}};
|
||||||
|
auto D0w = gf<imfreq, scalar_valued>{{beta, Boson, 100}};
|
||||||
|
auto Sigma_w = gf<imfreq, scalar_valued>{{beta, Fermion, 100}};
|
||||||
|
G0w(om_) << 1 / (om_ - 3);
|
||||||
|
|
||||||
|
for (auto const& nu : D0w.mesh()) Sigma_w(om_) << 2 * G0w(om_ - nu);
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
{
|
||||||
|
auto G0w = gf<imfreq, matrix_valued>{{beta, Fermion, 100}, {1,1}};
|
||||||
|
auto D0w = gf<imfreq, matrix_valued>{{beta, Boson, 100}, {1,1}};
|
||||||
|
auto Sigma_w = gf<imfreq, matrix_valued>{{beta, Fermion, 100}, {1,1}} ;
|
||||||
|
G0w(om_) << 1 / (om_ - 3);
|
||||||
|
|
||||||
|
for (auto const& nu : D0w.mesh()) Sigma_w(om_) << 2 * G0w(om_ - nu);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
TRIQS_CATCH_AND_ABORT;
|
TRIQS_CATCH_AND_ABORT;
|
||||||
|
|
||||||
|
@ -21,13 +21,66 @@
|
|||||||
#ifndef TRIQS_GF_DOMAIN_MATSUBARA_H
|
#ifndef TRIQS_GF_DOMAIN_MATSUBARA_H
|
||||||
#define TRIQS_GF_DOMAIN_MATSUBARA_H
|
#define TRIQS_GF_DOMAIN_MATSUBARA_H
|
||||||
#include "../tools.hpp"
|
#include "../tools.hpp"
|
||||||
|
#include "../meshes/mesh_tools.hpp"
|
||||||
|
|
||||||
namespace triqs { namespace gfs {
|
namespace triqs {
|
||||||
|
namespace gfs {
|
||||||
|
|
||||||
|
// --------------- One matsubara frequency, with its arithmetics -------------------------
|
||||||
|
// all operations are done by casting to complex, except addition and substraction of matsubara_freq
|
||||||
|
|
||||||
|
struct matsubara_freq : public arith_ops_by_cast<matsubara_freq, std::complex<double>> {
|
||||||
|
int n;
|
||||||
|
double beta;
|
||||||
|
statistic_enum statistic;
|
||||||
|
matsubara_freq(int const &n_, double beta_, statistic_enum stat_) : n(n_), beta(beta_), statistic(stat_) {}
|
||||||
|
using cast_t = std::complex<double>;
|
||||||
|
operator cast_t() const {
|
||||||
|
return {0, M_PI * (2 * n + (statistic == Fermion ? 1 : 0)) / beta};
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
inline matsubara_freq operator+(matsubara_freq const &x, matsubara_freq const &y) {
|
||||||
|
return {x.n + y.n + (x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
|
||||||
|
}
|
||||||
|
|
||||||
|
inline matsubara_freq operator-(matsubara_freq const &x, matsubara_freq const &y) {
|
||||||
|
// std::cout << x.n - y.n - (~x.statistic & y.statistic)<< std::endl;
|
||||||
|
return {x.n - y.n - (~x.statistic & y.statistic), x.beta, ((x.statistic ^ y.statistic) == 1 ? Fermion : Boson)};
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
#define IMPL_OP(OP) \
|
||||||
|
template <typename Y> auto operator OP(matsubara_freq const &x, Y &&y)->decltype(std::complex<double>{}) { \
|
||||||
|
return std::complex<double>(x) OP std::forward<Y>(y); \
|
||||||
|
} \
|
||||||
|
template <typename Y> \
|
||||||
|
auto operator OP(Y &&y, matsubara_freq const &x)->decltype(std::forward<Y>(y) OP std::complex<double>{}) { \
|
||||||
|
return std::forward<Y>(y) OP std::complex<double>(x); \
|
||||||
|
}
|
||||||
|
IMPL_OP(+);
|
||||||
|
IMPL_OP(-);
|
||||||
|
IMPL_OP(*);
|
||||||
|
IMPL_OP(/ );
|
||||||
|
#undef IMPL_OP
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* template <typename Y> auto operator OP(matsubara_freq const &x, Y &&y)->decltype(std::complex<double>{}) { \
|
||||||
|
return std::complex<double>(x) OP std::forward<Y>(y); \
|
||||||
|
} \
|
||||||
|
template <typename Y> \
|
||||||
|
auto operator OP(Y &&y, matsubara_freq const &x) \
|
||||||
|
->TYPE_DISABLE_IF(decltype(std::forward<Y>(y) OP std::complex<double>{}), \
|
||||||
|
std::is_same<typename std::remove_cv<typename std::remove_reference<Y>::type>::type, matsubara_freq>) { \
|
||||||
|
return std::forward<Y>(y) OP std::complex<double>(x); \
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
//---------------------------------------------------------------------------------------------------------
|
||||||
/// The domain
|
/// The domain
|
||||||
template<bool IsComplex>
|
template <bool IsFreq> struct matsubara_domain {
|
||||||
struct matsubara_domain {
|
using point_t = typename std::conditional<IsFreq, std::complex<double>, double>::type;
|
||||||
typedef typename mpl::if_c<IsComplex, std::complex<double>, double>::type point_t;
|
|
||||||
double beta;
|
double beta;
|
||||||
statistic_enum statistic;
|
statistic_enum statistic;
|
||||||
matsubara_domain() = default;
|
matsubara_domain() = default;
|
||||||
@ -35,7 +88,7 @@ namespace triqs { namespace gfs {
|
|||||||
if (beta < 0) TRIQS_RUNTIME_ERROR << "Matsubara domain construction : beta <0 : beta =" << beta << "\n";
|
if (beta < 0) TRIQS_RUNTIME_ERROR << "Matsubara domain construction : beta <0 : beta =" << beta << "\n";
|
||||||
}
|
}
|
||||||
matsubara_domain(matsubara_domain const &) = default;
|
matsubara_domain(matsubara_domain const &) = default;
|
||||||
matsubara_domain(matsubara_domain<!IsComplex> const &x): beta(x.beta), statistic(x.statistic) {}
|
matsubara_domain(matsubara_domain<!IsFreq> const &x) : beta(x.beta), statistic(x.statistic) {}
|
||||||
bool operator==(matsubara_domain const &D) const { return ((std::abs(beta - D.beta) < 1.e-15) && (statistic == D.statistic)); }
|
bool operator==(matsubara_domain const &D) const { return ((std::abs(beta - D.beta) < 1.e-15) && (statistic == D.statistic)); }
|
||||||
|
|
||||||
/// Write into HDF5
|
/// Write into HDF5
|
||||||
@ -48,7 +101,8 @@ namespace triqs { namespace gfs {
|
|||||||
/// Read from HDF5
|
/// Read from HDF5
|
||||||
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_domain &d) {
|
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_domain &d) {
|
||||||
h5::group gr = fg.open_group(subgroup_name);
|
h5::group gr = fg.open_group(subgroup_name);
|
||||||
double beta; std::string statistic;
|
double beta;
|
||||||
|
std::string statistic;
|
||||||
h5_read(gr, "beta", beta);
|
h5_read(gr, "beta", beta);
|
||||||
h5_read(gr, "statistic", statistic);
|
h5_read(gr, "statistic", statistic);
|
||||||
d = matsubara_domain(beta, (statistic == "F" ? Fermion : Boson));
|
d = matsubara_domain(beta, (statistic == "F" ? Fermion : Boson));
|
||||||
@ -56,14 +110,12 @@ namespace triqs { namespace gfs {
|
|||||||
|
|
||||||
// BOOST Serialization
|
// BOOST Serialization
|
||||||
friend class boost::serialization::access;
|
friend class boost::serialization::access;
|
||||||
template<class Archive>
|
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
|
||||||
void serialize(Archive & ar, const unsigned int version) {
|
|
||||||
ar &boost::serialization::make_nvp("beta", beta);
|
ar &boost::serialization::make_nvp("beta", beta);
|
||||||
ar &boost::serialization::make_nvp("statistic", statistic);
|
ar &boost::serialization::make_nvp("statistic", statistic);
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
}
|
||||||
}}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -24,49 +24,98 @@
|
|||||||
#include "./gf.hpp"
|
#include "./gf.hpp"
|
||||||
#include "./local/tail.hpp"
|
#include "./local/tail.hpp"
|
||||||
#include "./local/no_tail.hpp"
|
#include "./local/no_tail.hpp"
|
||||||
#include "./domains/matsubara.hpp"
|
#include "./meshes/matsubara_freq.hpp"
|
||||||
#include "./meshes/linear.hpp"
|
|
||||||
#include "./evaluators.hpp"
|
#include "./evaluators.hpp"
|
||||||
namespace triqs { namespace gfs {
|
namespace triqs {
|
||||||
|
namespace gfs {
|
||||||
|
|
||||||
struct imfreq {};
|
struct imfreq {};
|
||||||
|
|
||||||
template<typename Opt> struct gf_mesh<imfreq,Opt> : linear_mesh<matsubara_domain<true>> {
|
template <typename Opt> struct gf_mesh<imfreq, Opt> : matsubara_freq_mesh {
|
||||||
typedef linear_mesh<matsubara_domain<true>> B;
|
using B = matsubara_freq_mesh;
|
||||||
static double m1(double beta) { return std::acos(-1) / beta; }
|
static double m1(double beta) { return std::acos(-1) / beta; }
|
||||||
gf_mesh() = default;
|
gf_mesh() = default;
|
||||||
gf_mesh(B const &x) : B(x) {} // enables also construction from another Opt
|
gf_mesh(B const &x) : B(x) {} // enables also construction from another Opt
|
||||||
gf_mesh (typename B::domain_t const & d, int Nmax = 1025) :
|
gf_mesh(typename B::domain_t const &d, int Nmax = 1025) : B(d, Nmax, true) {}
|
||||||
B(d, d.statistic==Fermion?m1(d.beta):0, d.statistic==Fermion?(2*Nmax+1)*m1(d.beta): 2*Nmax*m1(d.beta), Nmax, without_last){}
|
|
||||||
gf_mesh(double beta, statistic_enum S, int Nmax = 1025) : gf_mesh({beta, S}, Nmax) {}
|
gf_mesh(double beta, statistic_enum S, int Nmax = 1025) : gf_mesh({beta, S}, Nmax) {}
|
||||||
};
|
};
|
||||||
|
|
||||||
namespace gfs_implementation {
|
namespace gfs_implementation {
|
||||||
|
|
||||||
// singularity
|
// singularity
|
||||||
template<> struct singularity<imfreq,matrix_valued,void> { typedef local::tail type;};
|
template <> struct singularity<imfreq, matrix_valued, void> {
|
||||||
template<> struct singularity<imfreq,scalar_valued,void> { typedef local::tail type;};
|
typedef local::tail type;
|
||||||
|
};
|
||||||
|
template <> struct singularity<imfreq, scalar_valued, void> {
|
||||||
|
typedef local::tail type;
|
||||||
|
};
|
||||||
|
|
||||||
// h5 name
|
// h5 name
|
||||||
template<typename Opt> struct h5_name<imfreq,matrix_valued,Opt> { static std::string invoke(){ return "ImFreq";}};
|
template <typename Opt> struct h5_name<imfreq, matrix_valued, Opt> {
|
||||||
|
static std::string invoke() { return "ImFreq"; }
|
||||||
|
};
|
||||||
|
|
||||||
/// --------------------------- evaluator ---------------------------------
|
/// --------------------------- evaluator ---------------------------------
|
||||||
|
|
||||||
template<> struct evaluator_fnt_on_mesh<imfreq> TRIQS_INHERIT_AND_FORWARD_CONSTRUCTOR(evaluator_fnt_on_mesh, evaluator_grid_simple);
|
// simple evaluation : take the point on the grid...
|
||||||
|
template <> struct evaluator_fnt_on_mesh<imfreq> {
|
||||||
|
long n;
|
||||||
|
evaluator_fnt_on_mesh() = default;
|
||||||
|
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, long p) { n = p; }
|
||||||
|
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, matsubara_freq_mesh::mesh_point_t const &p) { n = p.n; }
|
||||||
|
template <typename F> auto operator()(F const &f) const DECL_AND_RETURN(f(n));
|
||||||
|
};
|
||||||
|
|
||||||
template<typename Opt, typename Target>
|
// ------------- evaluator -------------------
|
||||||
struct evaluator<imfreq,Target,Opt> { // factorize and template on the long instead of double ?
|
// handle the case where the matsu. freq is out of grid...
|
||||||
public :
|
template <typename Target, typename Opt> struct evaluator<imfreq, Target, Opt> {
|
||||||
static constexpr int arity = 1;
|
static constexpr int arity = 1;
|
||||||
|
template <typename G> auto operator()(G const *g, int n) const DECL_AND_RETURN((*g)[n]);
|
||||||
template <typename G>
|
template <typename G>
|
||||||
auto operator()(G const * g, int n) const DECL_AND_RETURN((*g)[n]);
|
auto operator()(G const *g, matsubara_freq_mesh::mesh_point_t const &p) const DECL_AND_RETURN((*g)[p.index()]);
|
||||||
|
|
||||||
|
// dispatch for 2x2 cases : matrix/scalar and tail/no_tail ( true means no_tail)
|
||||||
|
template <typename G>
|
||||||
|
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::false_type) const {
|
||||||
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
|
||||||
|
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
|
||||||
|
return g->singularity().evaluate(f)(0, 0);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename G>
|
template <typename G>
|
||||||
auto operator() (G const * g, linear_mesh<matsubara_domain<true>>::mesh_point_t const & p)
|
std::complex<double> _call_impl(G const *g, matsubara_freq const &f, scalar_valued, std::true_type) const {
|
||||||
const DECL_AND_RETURN((*g)[p.index()]);
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
|
||||||
|
if ((f.n < 0) && (-f.n < g->mesh().size())) return conj((*g)[-f.n]);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
template <typename G>
|
template <typename G>
|
||||||
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
|
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
|
||||||
|
std::false_type) const {
|
||||||
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
|
||||||
|
if ((f.n < 0) && (-f.n < g->mesh().size()))
|
||||||
|
return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
|
||||||
|
else
|
||||||
|
return g->singularity().evaluate(f);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename G>
|
||||||
|
arrays::matrix_const_view<std::complex<double>> _call_impl(G const *g, matsubara_freq const &f, matrix_valued,
|
||||||
|
std::true_type) const {
|
||||||
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
|
||||||
|
if ((f.n < 0) && (-f.n < g->mesh().size())) return arrays::matrix<std::complex<double>>{conj((*g)[-f.n]())};
|
||||||
|
auto r = arrays::matrix<std::complex<double>>{get_target_shape(*g)};
|
||||||
|
r() = 0;
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename G>
|
||||||
|
auto operator()(G const *g, matsubara_freq const &f) const
|
||||||
|
DECL_AND_RETURN(_call_impl(g, f, Target{}, std::integral_constant<bool, std::is_same<Opt, no_tail>::value>{}));
|
||||||
|
|
||||||
|
template <typename G> typename G::singularity_t const &operator()(G const *g, freq_infty const &) const {
|
||||||
|
return g->singularity();
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
/// --------------------------- data access ---------------------------------
|
/// --------------------------- data access ---------------------------------
|
||||||
@ -74,6 +123,6 @@ namespace triqs { namespace gfs {
|
|||||||
template <typename Opt> struct data_proxy<imfreq, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
|
template <typename Opt> struct data_proxy<imfreq, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
|
||||||
|
|
||||||
} // gfs_implementation
|
} // gfs_implementation
|
||||||
|
}
|
||||||
}}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -126,6 +126,20 @@ namespace triqs { namespace gfs { namespace local {
|
|||||||
|
|
||||||
operator freq_infty() const { return freq_infty(); }
|
operator freq_infty() const { return freq_infty(); }
|
||||||
|
|
||||||
|
/// Evaluate the tail to sum_{n=order_min}^ordermax M_n/omega^n
|
||||||
|
arrays::matrix<dcomplex> evaluate(dcomplex const &omega) const {
|
||||||
|
auto r = arrays::matrix<dcomplex>{this->shape()};
|
||||||
|
r() = 0;
|
||||||
|
auto omin = this->order_min();
|
||||||
|
auto omax = this->order_max(); // precompute since long to do...
|
||||||
|
auto _ = arrays::range{};
|
||||||
|
for (int u = omax; u >= omin; --u)
|
||||||
|
r = r / omega +
|
||||||
|
const_mv_type{this->_data(u - omin, _, _)}; // need to make a matrix view because otherwise + is not defined
|
||||||
|
r /= pow(omega, omin);
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
/// Save in txt file: doc the format ? ---> prefer serialization or hdf5 !
|
/// Save in txt file: doc the format ? ---> prefer serialization or hdf5 !
|
||||||
void save(std::string file, bool accumulate=false) const {}
|
void save(std::string file, bool accumulate=false) const {}
|
||||||
|
|
||||||
|
135
triqs/gfs/meshes/matsubara_freq.hpp
Normal file
135
triqs/gfs/meshes/matsubara_freq.hpp
Normal file
@ -0,0 +1,135 @@
|
|||||||
|
/*******************************************************************************
|
||||||
|
*
|
||||||
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||||
|
*
|
||||||
|
* Copyright (C) 2013 by O. Parcollet
|
||||||
|
*
|
||||||
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
||||||
|
* terms of the GNU General Public License as published by the Free Software
|
||||||
|
* Foundation, either version 3 of the License, or (at your option) any later
|
||||||
|
* version.
|
||||||
|
*
|
||||||
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||||
|
* details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License along with
|
||||||
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
******************************************************************************/
|
||||||
|
#pragma once
|
||||||
|
#include "./mesh_tools.hpp"
|
||||||
|
#include "../domains/matsubara.hpp"
|
||||||
|
|
||||||
|
namespace triqs {
|
||||||
|
namespace gfs {
|
||||||
|
|
||||||
|
//----------------------------------- The mesh -----------------------------------------
|
||||||
|
struct matsubara_freq_mesh {
|
||||||
|
|
||||||
|
using domain_t = matsubara_domain<true>;
|
||||||
|
using index_t = int;
|
||||||
|
using domain_pt_t = typename domain_t::point_t;
|
||||||
|
|
||||||
|
matsubara_freq_mesh() : _dom(), n_max(0), _positive_only(true) {}
|
||||||
|
|
||||||
|
explicit matsubara_freq_mesh(domain_t dom, int n_pts, bool positive_only = true)
|
||||||
|
: _dom(std::move(dom)), n_max(n_pts), _positive_only(positive_only) {}
|
||||||
|
|
||||||
|
domain_t const &domain() const { return _dom; }
|
||||||
|
size_t size() const { return (_positive_only ? n_max : 2 * n_max + 1); }
|
||||||
|
|
||||||
|
/// Conversions point <-> index <-> linear_index
|
||||||
|
domain_pt_t index_to_point(index_t ind) const {
|
||||||
|
return 1_j * M_PI * (2 * ind + (_dom.statistic == Fermion ? 1 : 0)) / _dom.beta;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
size_t index_to_linear(index_t ind) const { return ind; }
|
||||||
|
|
||||||
|
/// The wrapper for the mesh point
|
||||||
|
struct mesh_point_t : tag::mesh_point, public arith_ops_by_cast<mesh_point_t, matsubara_freq> {
|
||||||
|
index_t n;
|
||||||
|
double beta;
|
||||||
|
statistic_enum statistic;
|
||||||
|
index_t n_max;
|
||||||
|
|
||||||
|
mesh_point_t()= default;
|
||||||
|
mesh_point_t(matsubara_freq_mesh const &mesh, index_t const &index_)
|
||||||
|
: n(index_), beta(mesh.domain().beta), statistic(mesh.domain().statistic), n_max(mesh.size()) {}
|
||||||
|
mesh_point_t(index_t const &index_, double beta_, statistic_enum stat_, index_t n_max_)
|
||||||
|
: n(index_), beta(beta_), statistic(stat_), n_max(n_max_) {}
|
||||||
|
void advance() { ++n; }
|
||||||
|
using cast_t = domain_pt_t;
|
||||||
|
operator cast_t() const { return 1_j * M_PI * (2 * n + (statistic == Fermion ? 1 : 0)) / beta; }
|
||||||
|
using cast1_t = matsubara_freq;
|
||||||
|
operator cast1_t() const { return {n,beta,statistic};}
|
||||||
|
size_t linear_index() const { return n; }
|
||||||
|
size_t index() const { return n; }
|
||||||
|
bool at_end() const { return (n == n_max); }
|
||||||
|
void reset() { n = 0; }
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Accessing a point of the mesh
|
||||||
|
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
|
||||||
|
|
||||||
|
/// Iterating on all the points...
|
||||||
|
using const_iterator = mesh_pt_generator<matsubara_freq_mesh>;
|
||||||
|
const_iterator begin() const { return const_iterator(this); }
|
||||||
|
const_iterator end() const { return const_iterator(this, true); }
|
||||||
|
const_iterator cbegin() const { return const_iterator(this); }
|
||||||
|
const_iterator cend() const { return const_iterator(this, true); }
|
||||||
|
|
||||||
|
/// Mesh comparison
|
||||||
|
bool operator==(matsubara_freq_mesh const &M) const {
|
||||||
|
return (std::make_tuple(_dom, n_max, _positive_only, n_max) == std::make_tuple(M._dom, M.n_max, M._positive_only, n_max));
|
||||||
|
}
|
||||||
|
bool operator!=(matsubara_freq_mesh const &M) const { return !(operator==(M)); }
|
||||||
|
|
||||||
|
/// Write into HDF5
|
||||||
|
friend void h5_write(h5::group fg, std::string subgroup_name, matsubara_freq_mesh const &m) {
|
||||||
|
h5::group gr = fg.create_group(subgroup_name);
|
||||||
|
h5_write(gr, "domain", m.domain());
|
||||||
|
h5_write(gr, "size", m.size());
|
||||||
|
//h5_write(gr, "start_at_0", m._positive_only);
|
||||||
|
// kept for backward compatibility
|
||||||
|
auto beta = m.domain().beta;
|
||||||
|
h5_write(gr, "min", Fermion ? M_PI / beta : 0);
|
||||||
|
h5_write(gr, "max", ((Fermion ? 1 : 0) + 2 * m.size()) * M_PI / beta);
|
||||||
|
h5_write(gr, "kind", 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Read from HDF5
|
||||||
|
friend void h5_read(h5::group fg, std::string subgroup_name, matsubara_freq_mesh &m) {
|
||||||
|
h5::group gr = fg.open_group(subgroup_name);
|
||||||
|
typename matsubara_freq_mesh::domain_t dom;
|
||||||
|
int L;
|
||||||
|
bool s = true;
|
||||||
|
h5_read(gr, "domain", dom);
|
||||||
|
h5_read(gr, "size", L);
|
||||||
|
//h5_read(gr, "start_at_0", s);
|
||||||
|
m = matsubara_freq_mesh{std::move(dom), L, s};
|
||||||
|
}
|
||||||
|
|
||||||
|
// BOOST Serialization
|
||||||
|
friend class boost::serialization::access;
|
||||||
|
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
|
||||||
|
ar &boost::serialization::make_nvp("domain", _dom);
|
||||||
|
ar &boost::serialization::make_nvp("size", n_max);
|
||||||
|
ar &boost::serialization::make_nvp("kind", _positive_only);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend std::ostream &operator<<(std::ostream &sout, matsubara_freq_mesh const &m) {
|
||||||
|
return sout << "Matsubara Freq Mesh of size " << m.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
domain_t _dom;
|
||||||
|
int n_max;
|
||||||
|
bool _positive_only;
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user