3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 05:43:40 +01:00
- Cleaned of the eigensystems computations (worker is simpler, decision
  at runtime, etc..).
- Fix #119 : When the matrix is in C order, the fortran lapack
  sees in fact its conjugate, so we need to conjugate the eigenvectors at the end.
  NB : not true if the storage order of the matrix is already fortran of course.
This commit is contained in:
Olivier Parcollet 2014-09-03 23:18:16 +02:00
parent be1b9b6f19
commit 9265c2db7f
4 changed files with 209 additions and 185 deletions

View File

@ -19,33 +19,53 @@
*
******************************************************************************/
#include "./common.hpp"
#include <triqs/arrays/array.hpp>
#include <triqs/arrays/vector.hpp>
#include <triqs/arrays/matrix.hpp>
#include <triqs/arrays/linalg/eigenelements.hpp>
#include <triqs/utility/complex_ops.hpp>
#include <iostream>
using namespace triqs::arrays;
using namespace triqs::arrays::linalg;
using dcomplex = std::complex<double>;
template <typename T> void check_eig(matrix<T> M, matrix<T> vectors, array<double, 1> values) {
auto _ = range();
for (auto i : range(0,first_dim(M))) {
std::cerr << "check "<< i << std::endl;
std::cerr << (M -values(i))* vectors(i, _)<<std::endl;
assert_all_close(M * vectors(i, _), values(i) * vectors(i, _), 1.e-14);
}}
template<typename M> void test(M A) {
auto w = eigenelements(make_clone(A));
std::cerr << "A = " << A << std::endl;
std::cerr << " values = " <<w.first << std::endl;
std::cerr << " vectors = " << w.second << std::endl;
check_eig (A, w.second, w.first);
}
int main(int argc, char **argv) {
{
matrix<double> A(3, 3);
for (int i = 0; i < 3; ++i)
for (int j=0; j<=i; ++j)
{ A(i,j) = (i>j ? i+2*j : i-j); A(j,i) = A(i,j);}
for (int j = 0; j <= i; ++j) {
A(i, j) = (i > j ? i + 2 * j : i - j);
A(j, i) = A(i, j);
}
std::cerr << "A = " << A << std::endl;
eigenelements_worker< matrix_view <double>, true> w (A());
w.invoke();
std::cout<<"A = "<<A<<std::endl;
std::cout<<" vectors = "<< w.values()<<std::endl;
std::cout<<" values = "<< w.vectors()<<std::endl;
auto B = A;
auto w = eigenelements(B);
std::cout << "A = " << B << std::endl;
std::cout << " vectors = " << w.first << std::endl;
std::cout << " values = " << w.second << std::endl;
check_eig (A, w.second, w.first);
}
{
matrix<double> A(3, 3);
A() = 0;
A(0, 1) = 1;
A(1, 0) = 1;
@ -53,23 +73,55 @@ int main(int argc, char **argv) {
A(0, 2) = 2;
A(2, 0) = 2;
auto B = A;
std::cout << "A = " << A << std::endl;
std::cout<<" values = "<< eigenelements(A(),true).first<<std::endl;
std::cout<<" vectors = "<< eigenelements(A(),true).second<<std::endl;
auto w = eigenelements(B);
std::cout << " values = " <<w.first << std::endl;
std::cout << " vectors = " << w.second << std::endl;
check_eig (A, w.second, w.first);
}
{
matrix<double> A(3, 3);
A() = 0;
A(0, 1) = 1;
A(1, 0) = 1;
A(2, 2) = 8;
auto B = A;
std::cout << "A = " << A << std::endl;
std::cout<<" vectors = "<< eigenelements(A(),true).second<<std::endl;
std::cout<<" values = "<< eigenelements(A(),true).first<<std::endl;
auto w = eigenelements(B);
std::cout << " vectors = " << w.second << std::endl;
std::cout << " values = " <<w.first << std::endl;
std::cout << "A = " << A << std::endl;
return 0;
check_eig (A, w.second, w.first);
}
{ // the complex case
matrix<dcomplex> M(2, 2);
M(0, 0) = 1;
M(0, 1) = 1.0_j;
M(1, 0) = -1.0_j;
M(1, 1) = 2;
test(M);
}
{ // the complex case
matrix<dcomplex> M(2, 2, FORTRAN_LAYOUT);
M(0, 0) = 1;
M(0, 1) = 1.0_j;
M(1, 0) = -1.0_j;
M(1, 1) = 2;
test(M);
}
return 0;
}

View File

@ -43,13 +43,12 @@ int main(int argc, char **argv) {
for (size_t i=0; i<4; ++i) { A(i,i+1) = DD(i); A(i+1,i) = DD(i);}
std::cerr<<"A = "<<A<<std::endl;
linalg::eigenelements_worker< matrix_view <double>, true> w2 (A());
w2.invoke();
std::cerr<<" check values = "<< w2.values()<<std::endl;
std::cerr<<" check vectors = "<< w2.vectors()<<std::endl;
auto eig = linalg::eigenelements(A());
std::cerr<<" check values = "<< eig.first<<std::endl;
std::cerr<<" check vectors = "<< eig.second<<std::endl;
assert_all_close(w.vectors()(R,R), w2.vectors(), 1.e-10);
assert_all_close(array_view<double,1>(w.values()), w2.values(), 1.e-10);
assert_all_close(w.vectors()(R,R), eig.second, 1.e-10);
assert_all_close(array_view<double,1>(w.values()), eig.first, 1.e-10);
return 0;
}

View File

@ -2,7 +2,7 @@
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
* Copyright (C) 2011-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
@ -18,76 +18,17 @@
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_ARRAY_EIGENELEMENTS_H
#define TRIQS_ARRAY_EIGENELEMENTS_H
#pragma once
#include <type_traits>
#include "../array.hpp"
#include "../matrix.hpp"
#include "../vector.hpp"
#include <triqs/utility/exceptions.hpp>
namespace triqs { namespace arrays { namespace linalg {
namespace triqs {
namespace arrays {
namespace linalg {
/**
* A worker to call lapack routine with the matrices.
*
* Handles both real and complex case.
*
* Usage :
* - construct from a VIEW of a matrix, that MUST be contiguous.
* - call invoke()
* - read the eigenvalues/vectors in values and vectors resp.
* NB : the content of the matrix is destroyed by the computation (it is .vectors() in fact, if Compute_Eigenvectors is true).
* For a one shot usage, prefer eigenelements, eigenvalues functions.
*/
template<typename MatrixViewType, bool Compute_Eigenvectors > struct eigenelements_worker;
template<typename T, ull_t Opt, bool Compute_Eigenvectors > struct eigenelements_worker_base;
template<typename T, ull_t Opt >
struct eigenelements_worker_base <T,Opt,false> {
private:
void operator = ( eigenelements_worker_base const & x);
protected:
matrix_view <T,Opt> mat;
triqs::arrays::vector<double> ev;
triqs::arrays::vector<T> work;
int dim,info,lwork;
char uplo,compz;
bool has_run;
eigenelements_worker_base ( matrix_view <T,Opt> the_matrix) : mat(the_matrix) {
if (mat.is_empty()) TRIQS_RUNTIME_ERROR<<"eigenelements_worker : the matrix is empty : matrix = "<<mat<<" ";
if (!mat.is_square()) TRIQS_RUNTIME_ERROR<<"eigenelements_worker : the matrix "<<mat<<" is not square ";
if (!mat.indexmap().is_contiguous()) TRIQS_RUNTIME_ERROR<<"eigenelements_worker : the matrix "<<mat<<" is not contiguous in memory";
dim = first_dim(mat);
ev.resize(dim);
lwork = 64*dim;
work.resize(lwork);
uplo='U';compz='N' ;
has_run = false;
}
public :
array<double,1> values() const {
if (!has_run) TRIQS_RUNTIME_ERROR<<"eigenelements_worker has not been invoked !";
return ev;
}
};
//--------------------------------
template<typename T, ull_t Opt>
struct eigenelements_worker_base <T,Opt,true> : eigenelements_worker_base <T,Opt,false> {
protected:
eigenelements_worker_base ( matrix_view <T,Opt> the_matrix) : eigenelements_worker_base <T,Opt,false> (the_matrix) {this->compz='V'; }
public:
typename matrix_view<T,Opt>::regular_type vectors() const {
if (!this->has_run) TRIQS_RUNTIME_ERROR<<"eigenelements_worker has not been invoked !";
return this->mat;
}
};
//--------------------------------
extern "C" {
void TRIQS_FORTRAN_MANGLING(dsyev)(char *, char *, // JOBZ and UPLO
int &, // Matrix Size
@ -112,33 +53,70 @@ namespace triqs { namespace arrays { namespace linalg {
);
}
//--------------------------------
template<ull_t Opt, bool Compute_Eigenvectors >
struct eigenelements_worker< matrix_view<double,Opt> ,Compute_Eigenvectors > :eigenelements_worker_base<double,Opt,Compute_Eigenvectors> {
eigenelements_worker ( matrix_view <double,Opt> the_matrix) : eigenelements_worker_base<double,Opt,Compute_Eigenvectors> (the_matrix) {}
void invoke() {
int info;
//fortran_int_t info;
TRIQS_FORTRAN_MANGLING(dsyev) (&this->compz,&this->uplo,this->dim,this->mat.data_start(),this->dim,this->ev.data_start(),this->work.data_start(),this->lwork,info);
if (info) TRIQS_RUNTIME_ERROR<<"eigenelements_worker :error code dsyev : "<<info<<" for matrix "<<this->mat;
this->has_run = true;
}
};
//--------------------------------
template<ull_t Opt, bool Compute_Eigenvectors >
struct eigenelements_worker< matrix_view<std::complex<double>, Opt>,Compute_Eigenvectors > :eigenelements_worker_base<std::complex<double>,Opt,Compute_Eigenvectors> {
triqs::arrays::vector <double> work2;
/**
* A worker to call lapack routine with the matrices. Handles both real and complex case.
*/
template <typename T> class eigenelements_worker {
public:
eigenelements_worker ( matrix_view <std::complex<double>,Opt> the_matrix) : eigenelements_worker_base<std::complex<double>,Opt,Compute_Eigenvectors> (the_matrix) { work2.resize(this->lwork);}
void invoke() {
int info;
TRIQS_FORTRAN_MANGLING(zheev) (&this->compz,&this->uplo,this->dim,this->mat.data_start(),
this->dim,this->ev.data_start(),this->work.data_start(),this->lwork,this->work2.data_start(),info);
if (info) TRIQS_RUNTIME_ERROR<<"eigenelements_worker :error code zheev : "<<info<<" for matrix "<<this->mat;
this->has_run = true;
eigenelements_worker() = default;
/// The eigenvalues
template <typename M> array<double, 1> eigenvalues(M &mat) const {
_prepare(mat);
_invoke(is_complex<T>(), 'N', mat);
return ev;
}
/// The eigensystems
template <typename M> std::pair<array<double, 1>, matrix<T>> eigenelements(M &mat) const {
_prepare(mat);
_invoke(is_complex<T>(), 'V', mat);
return {ev, _conj(mat, is_complex<T>())};
}
private:
mutable array<double, 1> ev, work2; // work2 only used for T complex
mutable array<T, 1> work;
mutable int dim, lwork, info;
// dispatch the implementation of invoke for T = double or complex
void _invoke(std::false_type, char compz, matrix_view<double> mat) const { // the case double (is_complex = false)
char uplo = 'U';
TRIQS_FORTRAN_MANGLING(dsyev)(&compz, &uplo, dim, mat.data_start(), dim, ev.data_start(), work.data_start(), lwork, info);
if (info) TRIQS_RUNTIME_ERROR << "eigenelements_worker :error code dsyev : " << info << " for matrix " << mat;
}
void _invoke(std::true_type, char compz, matrix_view<std::complex<double>> mat) const { // the case complex (is_complex = true)
char uplo = 'U';
TRIQS_FORTRAN_MANGLING(zheev)(&compz, &uplo, dim, mat.data_start(), dim, ev.data_start(), work.data_start(), lwork,
work2.data_start(), info);
if (info) TRIQS_RUNTIME_ERROR << "eigenelements_worker :error code zheev : " << info << " for matrix " << mat;
}
template <typename M> void _prepare(M const &mat) const {
if (mat.is_empty()) TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix is empty : matrix = " << mat << " ";
if (!mat.is_square()) TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix " << mat << " is not square ";
if (!mat.indexmap().is_contiguous())
TRIQS_RUNTIME_ERROR << "eigenelements_worker : the matrix " << mat << " is not contiguous in memory";
dim = first_dim(mat);
ev.resize(dim);
lwork = 64 * dim;
work.resize(lwork);
if (is_complex<T>::value) work2.resize(lwork);
}
template <typename M> matrix<double> _conj(M const &m, std::false_type) const { return m; }
// impl : since we call fortran lapack, if the order is C (!), the matrix is transposed, or conjugated, so we obtain
// the conjugate of the eigenvectors... Fix #119.
// Do nothing if the order is fortran already...
template <typename M> matrix<std::complex<double>> _conj(M const &m, std::true_type) const {
if (m.memory_layout_is_c())
return conj(m);
else
return m.transpose(); // the matrix mat is understood as a fortran matrix. After the lapack, in memory, it contains the
// correct answer.
// but since it is a fortran matrix, the C will see its transpose. We need to compensate this transpose (!).
}
};
@ -147,16 +125,12 @@ namespace triqs { namespace arrays { namespace linalg {
/**
* Simple diagonalization call, return all eigenelements.
* Handles both real and complex case.
* @param M : the matrix VIEW : it MUST be contiguous
* @param take_copy : makes a copy of the matrix before calling lapack, so that the original is preserved.
* if false : no copy is made and the content of the matrix M is destroyed (it is equal to vectors()).
* if true : a copy is made, M is preserved, but of course it is slower...
* @param M : the matrix or view. MUST be contiguous. It is modified by the call.
* If you wish not to modify it, call eigenelements(make_clone(A))
*/
template<typename MatrixViewType >
std::pair<array<double,1>, typename MatrixViewType::regular_type> eigenelements( MatrixViewType const & M, bool take_copy =false) {
eigenelements_worker<typename MatrixViewType::view_type, true> W(take_copy ? MatrixViewType(make_clone(M)) : M);
W.invoke();
return std::make_pair(W.values(),W.vectors());
template <typename M>
std::pair<array<double, 1>, matrix<typename std14::remove_reference_t<M>::value_type>> eigenelements(M &&m) {
return eigenelements_worker<typename std14::remove_reference_t<M>::value_type>().eigenelements(m);
}
//--------------------------------
@ -169,11 +143,10 @@ namespace triqs { namespace arrays { namespace linalg {
* if false : no copy is made and the content of the matrix M is destroyed.
* if true : a copy is made, M is preserved, but of course it is slower...
*/
template<typename MatrixViewType >
triqs::arrays::vector_view <double> eigenvalues( MatrixViewType const & M, bool take_copy = false) {
eigenelements_worker<MatrixViewType,false> W(take_copy ? MatrixViewType(make_clone(M)) : M); W.invoke(); return W.values();
template <typename M> array<double, 1> eigenvalues(M &&m) {
return eigenelements_worker<typename std14::remove_reference_t<M>::value_type>().eigenvalues(m);
}
}}} // namespace triqs::arrays::linalg
#endif
}
}
} // namespace triqs::arrays::linalg

View File

@ -59,7 +59,7 @@ namespace lattice {
array<double, 2> eval(norb, n_pts);
k_t dk = (K2 - K1) / double(n_pts), k = K1;
for (int i = 0; i < n_pts; ++i, k += dk) {
eval(range(), i) = linalg::eigenvalues(TK(k(range(0, ndim)))(), false);
eval(range(), i) = linalg::eigenvalues(TK(k(range(0, ndim)))());
}
return eval;
}
@ -86,7 +86,7 @@ namespace lattice {
grid_generator grid(ndim, n_pts);
array<double, 2> eval(norb, grid.size());
for (; grid; ++grid) {
eval(range(), grid.index()) = linalg::eigenvalues(TK((*grid)(range(0, ndim)))(), false);
eval(range(), grid.index()) = linalg::eigenvalues(TK((*grid)(range(0, ndim)))());
}
return eval;
}